Abstract:Large language models (LLMs) have shown great potential in medical question answering (MedQA), yet adapting them to biomedical reasoning remains challenging due to domain-specific complexity and limited supervision. In this work, we study how prompt design and lightweight fine-tuning affect the performance of open-source LLMs on PubMedQA, a benchmark for multiple-choice biomedical questions. We focus on two widely used prompting strategies - standard instruction prompts and Chain-of-Thought (CoT) prompts - and apply QLoRA for parameter-efficient instruction tuning. Across multiple model families and sizes, our experiments show that CoT prompting alone can improve reasoning in zero-shot settings, while instruction tuning significantly boosts accuracy. However, fine-tuning on CoT prompts does not universally enhance performance and may even degrade it for certain larger models. These findings suggest that reasoning-aware prompts are useful, but their benefits are model- and scale-dependent. Our study offers practical insights into combining prompt engineering with efficient finetuning for medical QA applications.