Abstract:Recent advances in fMRI-based visual decoding have enabled compelling reconstructions of perceived images. However, most approaches rely on subject-specific training, limiting scalability and practical deployment. We introduce \textbf{VoxelFormer}, a lightweight transformer architecture that enables multi-subject training for visual decoding from fMRI. VoxelFormer integrates a Token Merging Transformer (ToMer) for efficient voxel compression and a query-driven Q-Former that produces fixed-size neural representations aligned with the CLIP image embedding space. Evaluated on the 7T Natural Scenes Dataset, VoxelFormer achieves competitive retrieval performance on subjects included during training with significantly fewer parameters than existing methods. These results highlight token merging and query-based transformers as promising strategies for parameter-efficient neural decoding.
Abstract:Large language models (LLMs) have shown great potential in medical question answering (MedQA), yet adapting them to biomedical reasoning remains challenging due to domain-specific complexity and limited supervision. In this work, we study how prompt design and lightweight fine-tuning affect the performance of open-source LLMs on PubMedQA, a benchmark for multiple-choice biomedical questions. We focus on two widely used prompting strategies - standard instruction prompts and Chain-of-Thought (CoT) prompts - and apply QLoRA for parameter-efficient instruction tuning. Across multiple model families and sizes, our experiments show that CoT prompting alone can improve reasoning in zero-shot settings, while instruction tuning significantly boosts accuracy. However, fine-tuning on CoT prompts does not universally enhance performance and may even degrade it for certain larger models. These findings suggest that reasoning-aware prompts are useful, but their benefits are model- and scale-dependent. Our study offers practical insights into combining prompt engineering with efficient finetuning for medical QA applications.