Abstract:Vision-based motion estimation methods show promise in accurately and unobtrusively estimating human body motion for healthcare purposes. However, these methods are not specifically designed for healthcare purposes and face challenges in real-world applications. Human pose estimation methods often lack the accuracy needed for detecting fine-grained, subtle body movements, while optical flow-based methods struggle with poor lighting conditions and unseen real-world data. These issues result in human body motion estimation errors, particularly during critical medical situations where the body is motionless, such as during unconsciousness. To address these challenges and improve the accuracy of human body motion estimation for healthcare purposes, we propose the OPPH operator designed to enhance current vision-based motion estimation methods. This operator, which considers human body movement and noise properties, functions as a multi-stage filter. Results tested on two real-world and one synthetic human motion dataset demonstrate that the operator effectively removes real-world noise, significantly enhances the detection of motionless states, maintains the accuracy of estimating active body movements, and maintains long-term body movement trends. This method could be beneficial for analyzing both critical medical events and chronic medical conditions.
Abstract:Aging and chronic conditions affect older adults' daily lives, making early detection of developing health issues crucial. Weakness, common in many conditions, alters physical movements and daily activities subtly. However, detecting such changes can be challenging due to their subtle and gradual nature. To address this, we employ a non-intrusive camera sensor to monitor individuals' daily sitting and relaxing activities for signs of weakness. We simulate weakness in healthy subjects by having them perform physical exercise and observing the behavioral changes in their daily activities before and after workouts. The proposed system captures fine-grained features related to body motion, inactivity, and environmental context in real-time while prioritizing privacy. A Bayesian Network is used to model the relationships between features, activities, and health conditions. We aim to identify specific features and activities that indicate such changes and determine the most suitable time scale for observing the change. Results show 0.97 accuracy in distinguishing simulated weakness at the daily level. Fine-grained behavioral features, including non-dominant upper body motion speed and scale, and inactivity distribution, along with a 300-second window, are found most effective. However, individual-specific models are recommended as no universal set of optimal features and activities was identified across all participants.