Abstract:The polarization of opinions, information segregation, and cognitive biases on social media have attracted significant academic attention. In real-world networks, information often spans multiple interrelated topics, posing challenges for opinion evolution and highlighting the need for frameworks that simulate interactions among topics. Existing studies based on large language models (LLMs) focus largely on single topics, limiting the capture of cognitive transfer in multi-topic, cross-domain contexts. Traditional numerical models, meanwhile, simplify complex linguistic attitudes into discrete values, lacking interpretability, behavioral consistency, and the ability to integrate multiple topics. To address these issues, we propose Multi-topic Opinion Simulation (MTOS), a social simulation framework integrating multi-topic contexts with LLMs. MTOS leverages LLMs alongside short-term and long-term memory, incorporates multiple user-selection interaction mechanisms and dynamic topic-selection strategies, and employs a belief decay mechanism to enable perspective updates across topics. We conduct extensive experiments on MTOS, varying topic numbers, correlation types, and performing ablation studies to assess features such as group polarization and local consistency. Results show that multi-topic settings significantly alter polarization trends: positively correlated topics amplify echo chambers, negatively correlated topics inhibit them, and irrelevant topics also mitigate echo chamber effects through resource competition. Compared with numerical models, LLM-based agents realistically simulate dynamic opinion changes, reproduce linguistic features of news texts, and capture complex human reasoning, improving simulation interpretability and system stability.
Abstract:Spatial reasoning in Large Language Models (LLMs) is the foundation for embodied intelligence. However, even in simple maze environments, LLMs still encounter challenges in long-term path-planning, primarily influenced by their spatial hallucination and context inconsistency hallucination by long-term reasoning. To address this challenge, this study proposes an innovative model, Spatial-to-Relational Transformation and Curriculum Q-Learning (S2RCQL). To address the spatial hallucination of LLMs, we propose the Spatial-to-Relational approach, which transforms spatial prompts into entity relations and paths representing entity relation chains. This approach fully taps the potential of LLMs in terms of sequential thinking. As a result, we design a path-planning algorithm based on Q-learning to mitigate the context inconsistency hallucination, which enhances the reasoning ability of LLMs. Using the Q-value of state-action as auxiliary information for prompts, we correct the hallucinations of LLMs, thereby guiding LLMs to learn the optimal path. Finally, we propose a reverse curriculum learning technique based on LLMs to further mitigate the context inconsistency hallucination. LLMs can rapidly accumulate successful experiences by reducing task difficulty and leveraging them to tackle more complex tasks. We performed comprehensive experiments based on Baidu's self-developed LLM: ERNIE-Bot 4.0. The results showed that our S2RCQL achieved a 23%--40% improvement in both success and optimality rates compared with advanced prompt engineering.