Abstract:Identifying key biomarkers for COVID-19 from high-dimensional multi-omics data is critical for advancing both diagnostic and pathogenesis research. In this study, we evaluated the applicability of the Quantum Support Vector Machine (QSVM) algorithm for biomarker-based classification of COVID-19. Proteomic and metabolomic biomarkers from two independent datasets were ranked by importance using ridge regression and grouped accordingly. The top- and bottom-ranked biomarker sets were then used to train and evaluate both classical SVM (CSVM) and QSVM models, serving as predictive and negative control inputs, respectively. The QSVM was implemented with multiple quantum kernels, including amplitude encoding, angle encoding, the ZZ feature map, and the projected quantum kernel. Across various experimental settings, QSVM consistently achieved classification performance that was comparable to or exceeded that of CSVM, while reflecting the importance rankings by ridge regression. Although the experiments were conducted in numerical simulation, our findings highlight the potential of QSVM as a promising approach for multi-omics data analysis in biomedical research.
Abstract:The protection of Industrial Control Systems (ICS) that are employed in public critical infrastructures is of utmost importance due to catastrophic physical damages cyberattacks may cause. The research community requires testbeds for validation and comparing various intrusion detection algorithms to protect ICS. However, there exist high barriers to entry for research and education in the ICS cybersecurity domain due to expensive hardware, software, and inherent dangers of manipulating real-world systems. To close the gap, built upon recently developed 3D high-fidelity simulators, we further showcase our integrated framework to automatically launch cyberattacks, collect data, train machine learning models, and evaluate for practical chemical and manufacturing processes. On our testbed, we validate our proposed intrusion detection model called Minimal Threshold and Window SVM (MinTWin SVM) that utilizes unsupervised machine learning via a one-class SVM in combination with a sliding window and classification threshold. Results show that MinTWin SVM minimizes false positives and is responsive to physical process anomalies. Furthermore, we incorporate our framework with ICS cybersecurity education by using our dataset in an undergraduate machine learning course where students gain hands-on experience in practicing machine learning theory with a practical ICS dataset. All of our implementations have been open-sourced.