Abstract:The de novo design of proteins refers to creating proteins with specific structures and functions that do not naturally exist. In recent years, the accumulation of high-quality protein structure and sequence data and technological advancements have paved the way for the successful application of generative artificial intelligence (AI) models in protein design. These models have surpassed traditional approaches that rely on fragments and bioinformatics. They have significantly enhanced the success rate of de novo protein design, and reduced experimental costs, leading to breakthroughs in the field. Among various generative AI models, diffusion models have yielded the most promising results in protein design. In the past two to three years, more than ten protein design models based on diffusion models have emerged. Among them, the representative model, RFDiffusion, has demonstrated success rates in 25 protein design tasks that far exceed those of traditional methods, and other AI-based approaches like RFjoint and hallucination. This review will systematically examine the application of diffusion models in generating protein backbones and sequences. We will explore the strengths and limitations of different models, summarize successful cases of protein design using diffusion models, and discuss future development directions.
Abstract:Facial recognition and verification is a widely used biometric technology in security system. Unfortunately, face biometrics is vulnerable to spoofing attacks using photographs or videos. In this paper, we present an anisotropic diffusion-based kernel matrix model (ADKMM) for face liveness detection to prevent face spoofing attacks. We use the anisotropic diffusion to enhance the edges and boundary locations of a face image, and the kernel matrix model to extract face image features which we call the diffusion-kernel (D-K) features. The D-K features reflect the inner correlation of the face image sequence. We introduce convolution neural networks to extract the deep features, and then, employ a generalized multiple kernel learning method to fuse the D-K features and the deep features to achieve better performance. Our experimental evaluation on the two publicly available datasets shows that the proposed method outperforms the state-of-art face liveness detection methods.