Abstract:Graph Few-Shot Class-Incremental Learning (GFSCIL) enables models to continually learn from limited samples of novel tasks after initial training on a large base dataset. Existing GFSCIL approaches typically utilize Prototypical Networks (PNs) for metric-based class representations and fine-tune the model during the incremental learning stage. However, these PN-based methods oversimplify learning via novel query set fine-tuning and fail to integrate Graph Continual Learning (GCL) techniques due to architectural constraints. To address these challenges, we propose a more rigorous and practical setting for GFSCIL that excludes query sets during the incremental training phase. Building on this foundation, we introduce Model-Agnostic Meta Graph Continual Learning (MEGA), aimed at effectively alleviating catastrophic forgetting for GFSCIL. Specifically, by calculating the incremental second-order gradient during the meta-training stage, we endow the model to learn high-quality priors that enhance incremental learning by aligning its behaviors across both the meta-training and incremental learning stages. Extensive experiments on four mainstream graph datasets demonstrate that MEGA achieves state-of-the-art results and enhances the effectiveness of various GCL methods in GFSCIL. We believe that our proposed MEGA serves as a model-agnostic GFSCIL paradigm, paving the way for future research.
Abstract:Continual graph learning (CGL) is an important and challenging task that aims to extend static GNNs to dynamic task flow scenarios. As one of the mainstream CGL methods, the experience replay (ER) method receives widespread attention due to its superior performance. However, existing ER methods focus on identifying samples by feature significance or topological relevance, which limits their utilization of comprehensive graph data. In addition, the topology-based ER methods only consider local topological information and add neighboring nodes to the buffer, which ignores the global topological information and increases memory overhead. To bridge these gaps, we propose a novel method called Feature-Topology Fusion-based Experience Replay (FTF-ER) to effectively mitigate the catastrophic forgetting issue with enhanced efficiency. Specifically, from an overall perspective to maximize the utilization of the entire graph data, we propose a highly complementary approach including both feature and global topological information, which can significantly improve the effectiveness of the sampled nodes. Moreover, to further utilize global topological information, we propose Hodge Potential Score (HPS) as a novel module to calculate the topological importance of nodes. HPS derives a global node ranking via Hodge decomposition on graphs, providing more accurate global topological information compared to neighbor sampling. By excluding neighbor sampling, HPS significantly reduces buffer storage costs for acquiring topological information and simultaneously decreases training time. Compared with state-of-the-art methods, FTF-ER achieves a significant improvement of 3.6% in AA and 7.1% in AF on the OGB-Arxiv dataset, demonstrating its superior performance in the class-incremental learning setting.