Abstract:Increasing the scalability of machine learning to handle big volume of data is a challenging task. The scale up approach has some limitations. In this paper, we proposed a scale out approach for CNN-ELM based on MapReduce on classifier level. Map process is the CNN-ELM training for certain partition of data. It involves many CNN-ELM models that can be trained asynchronously. Reduce process is the averaging of all CNN-ELM weights as final training result. This approach can save a lot of training time than single CNN-ELM models trained alone. This approach also increased the scalability of machine learning by combining scale out and scale up approaches. We verified our method in extended MNIST data set and not-MNIST data set experiment. However, it has some drawbacks by additional iteration learning parameters that need to be carefully taken and training data distribution that need to be carefully selected. Further researches to use more complex image data set are required.
Abstract:In big data era, the data continuously generated and its distribution may keep changes overtime. These challenges in online stream of data are known as concept drift. In this paper, we proposed the Adaptive Convolutional ELM method (ACNNELM) as enhancement of Convolutional Neural Network (CNN) with a hybrid Extreme Learning Machine (ELM) model plus adaptive capability. This method is aimed for concept drift handling. We enhanced the CNN as convolutional hiererchical features representation learner combined with Elastic ELM (E$^2$LM) as a parallel supervised classifier. We propose an Adaptive OS-ELM (AOS-ELM) for concept drift adaptability in classifier level (named ACNNELM-1) and matrices concatenation ensembles for concept drift adaptability in ensemble level (named ACNNELM-2). Our proposed Adaptive CNNELM is flexible that works well in classifier level and ensemble level while most current methods only proposed to work on either one of the levels. We verified our method in extended MNIST data set and not MNIST data set. We set the experiment to simulate virtual drift, real drift, and hybrid drift event and we demonstrated how our CNNELM adaptability works. Our proposed method works well and gives better accuracy, computation scalability, and concept drifts adaptability compared to the regular ELM and CNN. Further researches are still required to study the optimum parameters and to use more varied image data set.
Abstract:A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.
Abstract:One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come from other domains, the medical text is special and has unique characteristics. In addition, the medical text mining poses more challenges, e.g., more unstructured text, the fast growing of new terms addition, a wide range of name variation for the same drug. The mining is even more challenging due to the lack of labeled dataset sources and external knowledge, as well as multiple token representations for a single drug name that is more common in the real application setting. Although many approaches have been proposed to overwhelm the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data representation techniques to overcome some of those challenges. We propose three data representation techniques based on the characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated with the standard NN model, i.e., MLP (Multi-Layer Perceptrons). The second technique involves two deep network classifiers, i.e., DBN (Deep Belief Networks), and SAE (Stacked Denoising Encoders). The third technique represents the sentence as a sequence that is evaluated with a recurrent NN model, i.e., LSTM (Long Short Term Memory). In extracting the drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score being 0.8645.