Abstract:Large Language Models (LLMs) have demonstrated remarkable generalization capabilities across diverse tasks and languages. In this study, we focus on natural language understanding in three classical languages -- Sanskrit, Ancient Greek and Latin -- to investigate the factors affecting cross-lingual zero-shot generalization. First, we explore named entity recognition and machine translation into English. While LLMs perform equal to or better than fine-tuned baselines on out-of-domain data, smaller models often struggle, especially with niche or abstract entity types. In addition, we concentrate on Sanskrit by presenting a factoid question-answering (QA) dataset and show that incorporating context via retrieval-augmented generation approach significantly boosts performance. In contrast, we observe pronounced performance drops for smaller LLMs across these QA tasks. These results suggest model scale as an important factor influencing cross-lingual generalization. Assuming that models used such as GPT-4o and Llama-3.1 are not instruction fine-tuned on classical languages, our findings provide insights into how LLMs may generalize on these languages and their consequent utility in classical studies.
Abstract:Indian languages are inflectional and agglutinative and typically follow clause-free word order. The structure of sentences across most major Indian languages are similar when their dependency parse trees are considered. While some differences in the parsing structure occur due to peculiarities of a language or its preferred natural way of conveying meaning, several apparent differences are simply due to the granularity of representation of the smallest semantic unit of processing in a sentence. The semantic unit is typically a word, typographically separated by whitespaces. A single whitespace-separated word in one language may correspond to a group of words in another. Hence, grouping of words based on semantics helps unify the parsing structure of parallel sentences across languages and, in the process, morphology. In this work, we propose word grouping as a major preprocessing step for any computational or linguistic processing of sentences for Indian languages. Among Indian languages, since Hindi is one of the least agglutinative, we expect it to benefit the most from word-grouping. Hence, in this paper, we focus on Hindi to study the effects of grouping. We perform quantitative assessment of our proposal with an intrinsic method that perturbs sentences by shuffling words as well as an extrinsic evaluation that verifies the importance of word grouping for the task of Machine Translation (MT) using decomposed prompting. We also qualitatively analyze certain aspects of the syntactic structure of sentences. Our experiments and analyses show that the proposed grouping technique brings uniformity in the syntactic structures, as well as aids underlying NLP tasks.