Abstract:In this work we study the potentialities of machine learning models in reconstructing the solar wind speed observations gathered in the first Lagrangian point by the ACE satellite in 2016--2017 using as input data galactic cosmic-ray flux variations measured with particle detectors hosted onboard the LISA Pathfinder mission also orbiting around L1 during the same years. We show that ensemble models composed of heterogeneous weak regressors are able to outperform weak regressors in terms of predictive accuracy. Machine learning and other powerful predictive algorithms open a window on the possibility of substituting dedicated instrumentation with software models acting as surrogates for diagnostics of space missions such as LISA and space weather science.
Abstract:Machine learning models are nowadays ubiquitous in space missions, performing a wide variety of tasks ranging from the prediction of multivariate time series through the detection of specific patterns in the input data. Adopted models are usually deep neural networks or other complex machine learning algorithms providing predictions that are opaque, i.e., human users are not allowed to understand the rationale behind the provided predictions. Several techniques exist in the literature to combine the impressive predictive performance of opaque machine learning models with human-intelligible prediction explanations, as for instance the application of symbolic knowledge extraction procedures. In this paper are reported the results of different knowledge extractors applied to an ensemble predictor capable of reproducing cosmic-ray data gathered on board the LISA Pathfinder space mission. A discussion about the readability/fidelity trade-off of the extracted knowledge is also presented.