Abstract:Regression-based predictive analytics used in modern kidney transplantation is known to inherit biases from training data. This leads to social discrimination and inefficient organ utilization, particularly in the context of a few social groups. Despite this concern, there is limited research on fairness in regression and its impact on organ utilization and placement. This paper introduces three novel divergence-based group fairness notions: (i) independence, (ii) separation, and (iii) sufficiency to assess the fairness of regression-based analytics tools. In addition, fairness preferences are investigated from crowd feedback, in order to identify a socially accepted group fairness criterion for evaluating these tools. A total of 85 participants were recruited from the Prolific crowdsourcing platform, and a Mixed-Logit discrete choice model was used to model fairness feedback and estimate social fairness preferences. The findings clearly depict a strong preference towards the separation and sufficiency fairness notions, and that the predictive analytics is deemed fair with respect to gender and race groups, but unfair in terms of age groups.
Abstract:Modern kidney placement incorporates several intelligent recommendation systems which exhibit social discrimination due to biases inherited from training data. Although initial attempts were made in the literature to study algorithmic fairness in kidney placement, these methods replace true outcomes with surgeons' decisions due to the long delays involved in recording such outcomes reliably. However, the replacement of true outcomes with surgeons' decisions disregards expert stakeholders' biases as well as social opinions of other stakeholders who do not possess medical expertise. This paper alleviates the latter concern and designs a novel fairness feedback survey to evaluate an acceptance rate predictor (ARP) that predicts a kidney's acceptance rate in a given kidney-match pair. The survey is launched on Prolific, a crowdsourcing platform, and public opinions are collected from 85 anonymous crowd participants. A novel social fairness preference learning algorithm is proposed based on minimizing social feedback regret computed using a novel logit-based fairness feedback model. The proposed model and learning algorithm are both validated using simulation experiments as well as Prolific data. Public preferences towards group fairness notions in the context of kidney placement have been estimated and discussed in detail. The specific ARP tested in the Prolific survey has been deemed fair by the participants.