Abstract:Surface reconstruction from point clouds is a fundamental challenge in computer graphics and medical imaging. In this paper, we explore the application of advanced neural network architectures for the accurate and efficient reconstruction of surfaces from data points. We introduce a novel variant of the Highway network (Hw) called Square-Highway (SqrHw) within the context of multilayer perceptrons and investigate its performance alongside plain neural networks and a simplified Hw in various numerical examples. These examples include the reconstruction of simple and complex surfaces, such as spheres, human hands, and intricate models like the Stanford Bunny. We analyze the impact of factors such as the number of hidden layers, interior and exterior points, and data distribution on surface reconstruction quality. Our results show that the proposed SqrHw architecture outperforms other neural network configurations, achieving faster convergence and higher-quality surface reconstructions. Additionally, we demonstrate the SqrHw's ability to predict surfaces over missing data, a valuable feature for challenging applications like medical imaging. Furthermore, our study delves into further details, demonstrating that the proposed method based on highway networks yields more stable weight norms and backpropagation gradients compared to the Plain Network architecture. This research not only advances the field of computer graphics but also holds utility for other purposes such as function interpolation and physics-informed neural networks, which integrate multilayer perceptrons into their algorithms.
Abstract:Background: Deep learning techniques, particularly neural networks, have revolutionized computational physics, offering powerful tools for solving complex partial differential equations (PDEs). However, ensuring stability and efficiency remains a challenge, especially in scenarios involving nonlinear and time-dependent equations. Methodology: This paper introduces novel residual-based architectures, namely the Simple Highway Network and the Squared Residual Network, designed to enhance stability and accuracy in physics-informed neural networks (PINNs). These architectures augment traditional neural networks by incorporating residual connections, which facilitate smoother weight updates and improve backpropagation efficiency. Results: Through extensive numerical experiments across various examples including linear and nonlinear, time-dependent and independent PDEs we demonstrate the efficacy of the proposed architectures. The Squared Residual Network, in particular, exhibits robust performance, achieving enhanced stability and accuracy compared to conventional neural networks. These findings underscore the potential of residual-based architectures in advancing deep learning for PDEs and computational physics applications.
Abstract:This paper introduces a novel neural network structure called the Power-Enhancing residual network, designed to improve interpolation capabilities for both smooth and non-smooth functions in 2D and 3D settings. By adding power terms to residual elements, the architecture boosts the network's expressive power. The study explores network depth, width, and optimization methods, showing the architecture's adaptability and performance advantages. Consistently, the results emphasize the exceptional accuracy of the proposed Power-Enhancing residual network, particularly for non-smooth functions. Real-world examples also confirm its superiority over plain neural network in terms of accuracy, convergence, and efficiency. The study also looks at the impact of deeper network. Moreover, the proposed architecture is also applied to solving the inverse Burgers' equation, demonstrating superior performance. In conclusion, the Power-Enhancing residual network offers a versatile solution that significantly enhances neural network capabilities. The codes implemented are available at: \url{https://github.com/CMMAi/ResNet_for_PINN}.