Abstract:While the last decade has witnessed significant advancements in Automatic Speech Recognition (ASR) systems, performance of these systems for individuals with speech disabilities remains inadequate, partly due to limited public training data. To bridge this gap, the 2025 Interspeech Speech Accessibility Project (SAP) Challenge was launched, utilizing over 400 hours of SAP data collected and transcribed from more than 500 individuals with diverse speech disabilities. Hosted on EvalAI and leveraging the remote evaluation pipeline, the SAP Challenge evaluates submissions based on Word Error Rate and Semantic Score. Consequently, 12 out of 22 valid teams outperformed the whisper-large-v2 baseline in terms of WER, while 17 teams surpassed the baseline on SemScore. Notably, the top team achieved the lowest WER of 8.11\%, and the highest SemScore of 88.44\% at the same time, setting new benchmarks for future ASR systems in recognizing impaired speech.
Abstract:This paper enhances dysarthric and dysphonic speech recognition by fine-tuning pretrained automatic speech recognition (ASR) models on the 2023-10-05 data package of the Speech Accessibility Project (SAP), which contains the speech of 253 people with Parkinson's disease. Experiments tested methods that have been effective for Cerebral Palsy, including the use of speaker clustering and severity-dependent models, weighted fine-tuning, and multi-task learning. Best results were obtained using a multi-task learning model, in which the ASR is trained to produce an estimate of the speaker's impairment severity as an auxiliary output. The resulting word error rates are considerably improved relative to a baseline model fine-tuned using only Librispeech data, with word error rate improvements of 37.62\% and 26.97\% compared to fine-tuning on 100h and 960h of LibriSpeech data, respectively.