Abstract:Machine learning models now influence decisions that directly affect people's lives, making it important to understand not only their predictions, but also how individuals could act to obtain better results. Algorithmic recourse provides actionable input modifications to achieve more favorable outcomes, typically relying on counterfactual explanations to suggest such changes. However, when the Rashomon set - the set of near-optimal models - is large, standard counterfactual explanations can become unreliable, as a recourse action valid for one model may fail under another. We introduce ElliCE, a novel framework for robust algorithmic recourse that optimizes counterfactuals over an ellipsoidal approximation of the Rashomon set. The resulting explanations are provably valid over this ellipsoid, with theoretical guarantees on uniqueness, stability, and alignment with key feature directions. Empirically, ElliCE generates counterfactuals that are not only more robust but also more flexible, adapting to user-specified feature constraints while being substantially faster than existing baselines. This provides a principled and practical solution for reliable recourse under model uncertainty, ensuring stable recommendations for users even as models evolve.




Abstract:We investigate the adversarial robustness of LLMs in transfer learning scenarios. Through comprehensive experiments on multiple datasets (MBIB Hate Speech, MBIB Political Bias, MBIB Gender Bias) and various model architectures (BERT, RoBERTa, GPT-2, Gemma, Phi), we reveal that transfer learning, while improving standard performance metrics, often leads to increased vulnerability to adversarial attacks. Our findings demonstrate that larger models exhibit greater resilience to this phenomenon, suggesting a complex interplay between model size, architecture, and adaptation methods. Our work highlights the crucial need for considering adversarial robustness in transfer learning scenarios and provides insights into maintaining model security without compromising performance. These findings have significant implications for the development and deployment of LLMs in real-world applications where both performance and robustness are paramount.