Abstract:Modern Large Multimodal Models (LMMs) have demonstrated extraordinary ability in static image and single-state spatial-temporal understanding. However, their capacity to comprehend the dynamic changes of objects within a shared spatial context between two distinct video observations, remains largely unexplored. This ability to reason about transformations within a consistent environment is particularly crucial for advancements in the field of spatial intelligence. In this paper, we introduce $M^3-Verse$, a Multi-Modal, Multi-State, Multi-Dimensional benchmark, to formally evaluate this capability. It is built upon paired videos that provide multi-perspective observations of an indoor scene before and after a state change. The benchmark contains a total of 270 scenes and 2,932 questions, which are categorized into over 50 subtasks that probe 4 core capabilities. We evaluate 16 state-of-the-art LMMs and observe their limitations in tracking state transitions. To address these challenges, we further propose a simple yet effective baseline that achieves significant performance improvements in multi-state perception. $M^3-Verse$ thus provides a challenging new testbed to catalyze the development of next-generation models with a more holistic understanding of our dynamic visual world. You can get the construction pipeline from https://github.com/Wal-K-aWay/M3-Verse_pipeline and full benchmark data from https://www.modelscope.cn/datasets/WalKaWay/M3-Verse.
Abstract:Understanding dynamic 4D scenes from an egocentric perspective-modeling changes in 3D spatial structure over time-is crucial for human-machine interaction, autonomous navigation, and embodied intelligence. While existing egocentric datasets contain dynamic scenes, they lack unified 4D annotations and task-driven evaluation protocols for fine-grained spatio-temporal reasoning, especially on motion of objects and human, together with their interactions. To address this gap, we introduce EgoDynamic4D, a novel QA benchmark on highly dynamic scenes, comprising RGB-D video, camera poses, globally unique instance masks, and 4D bounding boxes. We construct 927K QA pairs accompanied by explicit Chain-of-Thought (CoT), enabling verifiable, step-by-step spatio-temporal reasoning. We design 12 dynamic QA tasks covering agent motion, human-object interaction, trajectory prediction, relation understanding, and temporal-causal reasoning, with fine-grained, multidimensional metrics. To tackle these tasks, we propose an end-to-end spatio-temporal reasoning framework that unifies dynamic and static scene information, using instance-aware feature encoding, time and camera encoding, and spatially adaptive down-sampling to compress large 4D scenes into token sequences manageable by LLMs. Experiments on EgoDynamic4D show that our method consistently outperforms baselines, validating the effectiveness of multimodal temporal modeling for egocentric dynamic scene understanding.