Abstract:Molecular communication (MC) enables information transfer using particles inspired by biological systems. Volatile Organic Compounds (VOCs) are one of the most abundant and diverse classes of signaling molecules used by living or non-living objects. VOC-based MC holds great promise in developing long-range, bio-compatible communication systems capable of interfacing nano- and micro-scale devices. In this paper, we present a comprehensive end-to-end framework for VOC-based interplant MC from an ICT perspective. The communication process is divided into three stages: transmission (VOC biosynthesis and emission from leaves), channel propagation (advection-diffusion in turbulent wind via Gaussian puff for stress-induced VOC release and Gaussian plume for constitutive VOC release), and reception (VOC uptake and physiological response in the receiver plant). Each stage is analyzed by its attenuation and delay. Numerical results demonstrate that VOC-based channels exhibit low-pass behavior, with bandwidth and capacity heavily influenced by distance, wind velocity, and noise. Though the physical channel supports moderate frequencies, biological constraints at the transmitter restrict the end-to-end channel to slow-varying signals.




Abstract:The advancements in nanotechnology, material science, and electrical engineering have shrunk the sizes of electronic devices down to the micro/nanoscale. This brings the opportunity of developing the Internet of Nano Things (IoNT), an extension of the Internet of Things (IoT). With nanodevices, numerous new possibilities emerge in the biomedical, military fields, and industrial products. However, a continuous energy supply is needed for these devices to work. At the micro/nanoscale, batteries cannot supply this demand due to size limitations and the limited energy contained in the batteries. Internet of Harvester Nano Things (IoHNT), a concept of Energy Harvesting (EH), which converts the existing different energy sources, which otherwise would be dissipated to waste, into electrical energy via electrical generators. Sources for EH are abundant, from sunlight, sound, water, and airflow to living organisms. IoHNT methods are significant assets to ensure the proper operation of the IoNT; thus, in this review, we comprehensively investigate the most useful energy sources and IoHNT principles to power the nano/micro-scaled electronic devices with the scope of IoNT. We discuss the IoHNT principles, material selections, challenges, and state-of-the-art applications of each energy source for both in-vivo and in vitro applications. Finally, we present the latest challenges of EH along with future research directions to solve the problems regarding constructing continuous IoNT containing various self-powered nanodevices. Therefore, IoHNT represents a significant shift in nanodevice power supply, leading us towards a future where wireless technology is widespread. Hence, it will motivate researchers to envision and contribute to the advancement of the following power revolution in IoNT, providing unmatched simplicity and efficiency.