Abstract:Large Language Models (LLMs) are increasingly employed as evaluators (LLM-as-a-Judge) for assessing the quality of machine-generated text. This paradigm offers scalability and cost-effectiveness compared to human annotation. However, the reliability and security of such systems, particularly their robustness against adversarial manipulations, remain critical concerns. This paper investigates the vulnerability of LLM-as-a-Judge architectures to prompt-injection attacks, where malicious inputs are designed to compromise the judge's decision-making process. We formalize two primary attack strategies: Comparative Undermining Attack (CUA), which directly targets the final decision output, and Justification Manipulation Attack (JMA), which aims to alter the model's generated reasoning. Using the Greedy Coordinate Gradient (GCG) optimization method, we craft adversarial suffixes appended to one of the responses being compared. Experiments conducted on the MT-Bench Human Judgments dataset with open-source instruction-tuned LLMs (Qwen2.5-3B-Instruct and Falcon3-3B-Instruct) demonstrate significant susceptibility. The CUA achieves an Attack Success Rate (ASR) exceeding 30\%, while JMA also shows notable effectiveness. These findings highlight substantial vulnerabilities in current LLM-as-a-Judge systems, underscoring the need for robust defense mechanisms and further research into adversarial evaluation and trustworthiness in LLM-based assessment frameworks.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains, but their vulnerability to trojan or backdoor attacks poses significant security risks. This paper explores the challenges and insights gained from the Trojan Detection Competition 2023 (TDC2023), which focused on identifying and evaluating trojan attacks on LLMs. We investigate the difficulty of distinguishing between intended and unintended triggers, as well as the feasibility of reverse engineering trojans in real-world scenarios. Our comparative analysis of various trojan detection methods reveals that achieving high Recall scores is significantly more challenging than obtaining high Reverse-Engineering Attack Success Rate (REASR) scores. The top-performing methods in the competition achieved Recall scores around 0.16, comparable to a simple baseline of randomly sampling sentences from a distribution similar to the given training prefixes. This finding raises questions about the detectability and recoverability of trojans inserted into the model, given only the harmful targets. Despite the inability to fully solve the problem, the competition has led to interesting observations about the viability of trojan detection and improved techniques for optimizing LLM input prompts. The phenomenon of unintended triggers and the difficulty in distinguishing them from intended triggers highlights the need for further research into the robustness and interpretability of LLMs. The TDC2023 has provided valuable insights into the challenges and opportunities associated with trojan detection in LLMs, laying the groundwork for future research in this area to ensure their safety and reliability in real-world applications.