Abstract:Recent advances in large language models (LLMs) have led to their popularity across multiple use-cases. However, prompt engineering, the process for optimally utilizing such models, remains approximation-driven and subjective. Most of the current research on prompt engineering focuses on task-specific optimization, while neglecting the behavior of the LLM under consideration during prompt development. This paper introduces MODP -- Multi Objective Directional Prompting, a framework based on two key concepts: 1) multi-objectivity: the importance of considering an LLM's intrinsic behavior as an additional objective in prompt development, and 2) directional prompting: a metrics-driven method for prompt engineering to ensure development of robust and high-precision prompts. We demonstrate the effectiveness of our proposed ideas on a summarization task, using a synthetically created dataset, achieving a 26% performance gain over initial prompts. Finally, we apply MODP to develop prompts for Dell's Next Best Action support tool, which is now in production and is used by more than 10,000 internal support agents and serving millions of customers worldwide.
Abstract:The K-Modes algorithm, developed for clustering categorical data, is of high algorithmic simplicity but suffers from unreliable performances in clustering quality and clustering efficiency, both heavily influenced by the choice of initial cluster centers. In this paper, we investigate Bisecting K-Modes (BK-Modes), a successive bisecting process to find clusters, in examining how good the cluster centers out of the bisecting process will be when used as initial centers for the K-Modes. The BK-Modes works by splitting a dataset into multiple clusters iteratively with one cluster being chosen and bisected into two clusters in each iteration. We use the sum of distances of data to their cluster centers as the selection metric to choose a cluster to be bisected in each iteration. This iterative process stops when K clusters are produced. The centers of these K clusters are then used as the initial cluster centers for the K-Modes. Experimental studies of the BK-Modes were carried out and were compared against the K-Modes with multiple sets of initial cluster centers as well as the best of the existing methods we found so far in our survey. Experimental results indicated good performances of BK-Modes both in the clustering quality and efficiency for large datasets.