Abstract:Multimodal medical imaging integrates diverse data types, such as structural and functional neuroimaging, to provide complementary insights that enhance deep learning predictions and improve outcomes. This study focuses on a neuroimaging prediction framework based on both structural and functional neuroimaging data. We propose a next-generation prediction model, \textbf{MultiViT2}, which combines a pretrained representative learning base model with a vision transformer backbone for prediction output. Additionally, we developed a data augmentation module based on the latent diffusion model that enriches input data by generating augmented neuroimaging samples, thereby enhancing predictive performance through reduced overfitting and improved generalizability. We show that MultiViT2 significantly outperforms the first-generation model in schizophrenia classification accuracy and demonstrates strong scalability and portability.
Abstract:Generative models based on deep learning have shown significant potential in medical imaging, particularly for modality transformation and multimodal fusion in MRI-based brain imaging. This study introduces GM-LDM, a novel framework that leverages the latent diffusion model (LDM) to enhance the efficiency and precision of MRI generation tasks. GM-LDM integrates a 3D autoencoder, pre-trained on the large-scale ABCD MRI dataset, achieving statistical consistency through KL divergence loss. We employ a Vision Transformer (ViT)-based encoder-decoder as the denoising network to optimize generation quality. The framework flexibly incorporates conditional data, such as functional network connectivity (FNC) data, enabling personalized brain imaging, biomarker identification, and functional-to-structural information translation for brain diseases like schizophrenia.