Department of AI Mobility Engineering, Suwon, South Korea
Abstract:Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across various multimodal tasks by integrating visual perception with language understanding. However, conventional decoding strategies of LVLMs often fail to successfully utilize visual information, leading to visually ungrounded responses. While various approaches have been proposed to address this limitation, they typically require additional training, multi-step inference procedures, or external model dependencies. This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in LVLMs. Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. This selected vision token is then used to refine the output distribution to better incorporate visual semantics. Experiments on three LVLM hallucination benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead. Moreover, our method achieves competitive or superior results relative to state-of-the-art baselines while reducing computational costs for up to $2\times$.
Abstract:Point cloud representation has recently become a research hotspot in the field of computer vision and has been utilized for autonomous vehicles. However, adapting deep learning networks for point cloud data recognition is challenging due to the variability in datasets and sensor technologies. This variability underscores the necessity for adaptive techniques to maintain accuracy under different conditions. In this paper, we present the Multi-View Structural Convolution Network (MSCN) designed for domain-invariant point cloud recognition. MSCN comprises Structural Convolution Layers (SCL) that extract local context geometric features from point clouds and Structural Aggregation Layers (SAL) that extract and aggregate both local and overall context features from point clouds. Additionally, our MSCN enhances feature representation robustness by training with unseen domain point clouds derived from source domain point clouds. This method acquires domain-invariant features and exhibits robust, consistent performance across various point cloud datasets, ensuring compatibility with diverse sensor configurations without the need for parameter adjustments. This highlights MSCN's potential to significantly improve the reliability and domain invariant features in different environments. Our code is available at https://github.com/MLMLab/MSCN.
Abstract:Adapting deep learning networks for point cloud data recognition in self-driving vehicles faces challenges due to the variability in datasets and sensor technologies, emphasizing the need for adaptive techniques to maintain accuracy across different conditions. In this paper, we introduce the 3D Adaptive Structural Convolution Network (3D-ASCN), a cutting-edge framework for 3D point cloud recognition. It combines 3D convolution kernels, a structural tree structure, and adaptive neighborhood sampling for effective geometric feature extraction. This method obtains domain-invariant features and demonstrates robust, adaptable performance on a variety of point cloud datasets, ensuring compatibility across diverse sensor configurations without the need for parameter adjustments. This highlights its potential to significantly enhance the reliability and efficiency of self-driving vehicle technology.