Abstract:Federated Learning (FL) enables collaborative model training on decentralized data without exposing raw data. However, the evaluation phase in FL may leak sensitive information through shared performance metrics. In this paper, we propose a novel protocol that incorporates Zero-Knowledge Proofs (ZKPs) to enable privacy-preserving and verifiable evaluation for FL. Instead of revealing raw loss values, clients generate a succinct proof asserting that their local loss is below a predefined threshold. Our approach is implemented without reliance on external APIs, using self-contained modules for federated learning simulation, ZKP circuit design, and experimental evaluation on both the MNIST and Human Activity Recognition (HAR) datasets. We focus on a threshold-based proof for a simple Convolutional Neural Network (CNN) model (for MNIST) and a multi-layer perceptron (MLP) model (for HAR), and evaluate the approach in terms of computational overhead, communication cost, and verifiability.
Abstract:Adversarial Training is a proven defense strategy against adversarial malware. However, generating adversarial malware samples for this type of training presents a challenge because the resulting adversarial malware needs to remain evasive and functional. This work proposes an attack framework, EGAN, to address this limitation. EGAN leverages an Evolution Strategy and Generative Adversarial Network to select a sequence of attack actions that can mutate a Ransomware file while preserving its original functionality. We tested this framework on popular AI-powered commercial antivirus systems listed on VirusTotal and demonstrated that our framework is capable of bypassing the majority of these systems. Moreover, we evaluated whether the EGAN attack framework can evade other commercial non-AI antivirus solutions. Our results indicate that the adversarial ransomware generated can increase the probability of evading some of them.