Abstract:As Federated Learning (FL) expands to larger and more distributed environments, consistency in training is challenged by network-induced delays, clock unsynchronicity, and variability in client updates. This combination of factors may contribute to misaligned contributions that undermine model reliability and convergence. Existing methods like staleness-aware aggregation and model versioning address lagging updates heuristically, yet lack mechanisms to quantify staleness, especially in latency-sensitive and cross-regional deployments. In light of these considerations, we introduce \emph{SyncFed}, a time-aware FL framework that employs explicit synchronization and timestamping to establish a common temporal reference across the system. Staleness is quantified numerically based on exchanged timestamps under the Network Time Protocol (NTP), enabling the server to reason about the relative freshness of client updates and apply temporally informed weighting during aggregation. Our empirical evaluation on a geographically distributed testbed shows that, under \emph{SyncFed}, the global model evolves within a stable temporal context, resulting in improved accuracy and information freshness compared to round-based baselines devoid of temporal semantics.
Abstract:Cyberattacks are increasingly threatening networked systems, often with the emergence of new types of unknown (zero-day) attacks and the rise of vulnerable devices. While Machine Learning (ML)-based Intrusion Detection Systems (IDSs) have been shown to be extremely promising in detecting these attacks, the need to learn large amounts of labelled data often limits the applicability of ML-based IDSs to cybersystems that only have access to private local data. To address this issue, this paper proposes a novel Decentralized and Online Federated Learning Intrusion Detection (DOF-ID) architecture. DOF-ID is a collaborative learning system that allows each IDS used for a cybersystem to learn from experience gained in other cybersystems in addition to its own local data without violating the data privacy of other systems. As the performance evaluation results using public Kitsune and Bot-IoT datasets show, DOF-ID significantly improves the intrusion detection performance in all collaborating nodes simultaneously with acceptable computation time for online learning.