Abstract:This paper describes our submission for SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The task involves detecting hallucinated spans in text generated by instruction-tuned Large Language Models (LLMs) across multiple languages. Our approach combines task-specific prompt engineering with an LLM ensemble verification mechanism, where a primary model extracts hallucination spans and three independent LLMs adjudicate their validity through probability-based voting. This framework simulates the human annotation workflow used in the shared task validation and test data. Additionally, fuzzy matching refines span alignment. Our system ranked 1st in Arabic and Basque, 2nd in German, Swedish, and Finnish, and 3rd in Czech, Farsi, and French.
Abstract:We present MSA-MathEval, our submission to the BEA 2025 Shared Task on evaluating AI tutor responses across four instructional dimensions: Mistake Identification, Mistake Location, Providing Guidance, and Actionability. Our approach uses a unified training pipeline to fine-tune a single instruction-tuned language model across all tracks, without any task-specific architectural changes. To improve prediction reliability, we introduce a disagreement-aware ensemble inference strategy that enhances coverage of minority labels. Our system achieves strong performance across all tracks, ranking 1st in Providing Guidance, 3rd in Actionability, and 4th in both Mistake Identification and Mistake Location. These results demonstrate the effectiveness of scalable instruction tuning and disagreement-driven modeling for robust, multi-dimensional evaluation of LLMs as educational tutors.
Abstract:Hallucination detection in text generation remains an ongoing struggle for natural language processing (NLP) systems, frequently resulting in unreliable outputs in applications such as machine translation and definition modeling. Existing methods struggle with data scarcity and the limitations of unlabeled datasets, as highlighted by the SHROOM shared task at SemEval-2024. In this work, we propose a novel framework to address these challenges, introducing DeepSeek Few-shot optimization to enhance weak label generation through iterative prompt engineering. We achieved high-quality annotations that considerably enhanced the performance of downstream models by restructuring data to align with instruct generative models. We further fine-tuned the Mistral-7B-Instruct-v0.3 model on these optimized annotations, enabling it to accurately detect hallucinations in resource-limited settings. Combining this fine-tuned model with ensemble learning strategies, our approach achieved 85.5% accuracy on the test set, setting a new benchmark for the SHROOM task. This study demonstrates the effectiveness of data restructuring, few-shot optimization, and fine-tuning in building scalable and robust hallucination detection frameworks for resource-constrained NLP systems.
Abstract:Understanding the deep meanings of the Qur'an and bridging the language gap between modern standard Arabic and classical Arabic is essential to improve the question-and-answer system for the Holy Qur'an. The Qur'an QA 2023 shared task dataset had a limited number of questions with weak model retrieval. To address this challenge, this work updated the original dataset and improved the model accuracy. The original dataset, which contains 251 questions, was reviewed and expanded to 629 questions with question diversification and reformulation, leading to a comprehensive set of 1895 categorized into single-answer, multi-answer, and zero-answer types. Extensive experiments fine-tuned transformer models, including AraBERT, RoBERTa, CAMeLBERT, AraELECTRA, and BERT. The best model, AraBERT-base, achieved a MAP@10 of 0.36 and MRR of 0.59, representing improvements of 63% and 59%, respectively, compared to the baseline scores (MAP@10: 0.22, MRR: 0.37). Additionally, the dataset expansion led to improvements in handling "no answer" cases, with the proposed approach achieving a 75% success rate for such instances, compared to the baseline's 25%. These results demonstrate the effect of dataset improvement and model architecture optimization in increasing the performance of QA systems for the Holy Qur'an, with higher accuracy, recall, and precision.