Abstract:This paper describes our submission for SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The task involves detecting hallucinated spans in text generated by instruction-tuned Large Language Models (LLMs) across multiple languages. Our approach combines task-specific prompt engineering with an LLM ensemble verification mechanism, where a primary model extracts hallucination spans and three independent LLMs adjudicate their validity through probability-based voting. This framework simulates the human annotation workflow used in the shared task validation and test data. Additionally, fuzzy matching refines span alignment. Our system ranked 1st in Arabic and Basque, 2nd in German, Swedish, and Finnish, and 3rd in Czech, Farsi, and French.
Abstract:Hallucination detection in text generation remains an ongoing struggle for natural language processing (NLP) systems, frequently resulting in unreliable outputs in applications such as machine translation and definition modeling. Existing methods struggle with data scarcity and the limitations of unlabeled datasets, as highlighted by the SHROOM shared task at SemEval-2024. In this work, we propose a novel framework to address these challenges, introducing DeepSeek Few-shot optimization to enhance weak label generation through iterative prompt engineering. We achieved high-quality annotations that considerably enhanced the performance of downstream models by restructuring data to align with instruct generative models. We further fine-tuned the Mistral-7B-Instruct-v0.3 model on these optimized annotations, enabling it to accurately detect hallucinations in resource-limited settings. Combining this fine-tuned model with ensemble learning strategies, our approach achieved 85.5% accuracy on the test set, setting a new benchmark for the SHROOM task. This study demonstrates the effectiveness of data restructuring, few-shot optimization, and fine-tuning in building scalable and robust hallucination detection frameworks for resource-constrained NLP systems.