Abstract:In the era of big data, managing dynamic data flows efficiently is crucial as traditional storage models struggle with real-time regulation and risk overflow. This paper introduces Data Dams, a novel framework designed to optimize data inflow, storage, and outflow by dynamically adjusting flow rates to prevent congestion while maximizing resource utilization. Inspired by physical dam mechanisms, the framework employs intelligent sluice controls and predictive analytics to regulate data flow based on system conditions such as bandwidth availability, processing capacity, and security constraints. Simulation results demonstrate that the Data Dam significantly reduces average storage levels (371.68 vs. 426.27 units) and increases total outflow (7999.99 vs. 7748.76 units) compared to static baseline models. By ensuring stable and adaptive outflow rates under fluctuating data loads, this approach enhances system efficiency, mitigates overflow risks, and outperforms existing static flow control strategies. The proposed framework presents a scalable solution for dynamic data management in large-scale distributed systems, paving the way for more resilient and efficient real-time processing architectures.
Abstract:In the context of widespread global information sharing, information security and privacy protection have become focal points. Steganographic systems enhance information security by embedding confidential information into public carriers; however, existing generative text steganography methods face challenges in handling the long-tail distribution of candidate word pools, which impacts the imperceptibility of steganographic information. This paper proposes a quality control theory for steganographic text generation based on information entropy constraints, exploring the relationship between the imperceptibility of steganographic texts and information entropy. By controlling the information entropy of the candidate word pool within a specific range, we optimize the imperceptibility of the steganographic text. We establish upper and lower bounds for information entropy and introduce an adaptive truncation method to balance semantic coherence and lexical diversity. Experimental results demonstrate that reasonably controlling the candidate pool size and information entropy thresholds significantly enhances the quality and detection resistance of steganographic texts, showcasing broad application potential in the field of natural language processing.