Abstract:Quantum federated learning (QFL) is an emerging field that has the potential to revolutionize computation by taking advantage of quantum physics concepts in a distributed machine learning (ML) environment. However, the majority of available quantum simulators are primarily built for general quantum circuit simulation and do not include integrated support for machine learning tasks such as training, evaluation, and iterative optimization. Furthermore, designing and assessing quantum learning algorithms is still a difficult and resource-intensive task. Real-time updates are essential for observing model convergence, debugging quantum circuits, and making conscious choices during training with the use of limited resources. Furthermore, most current simulators fail to support the integration of user-specific data for training purposes, undermining the main purpose of using a simulator. In this study, we introduce SimQFL, a customized simulator that simplifies and accelerates QFL experiments in quantum network applications. SimQFL supports real-time, epoch-wise output development and visualization, allowing researchers to monitor the process of learning across each training round. Furthermore, SimQFL offers an intuitive and visually appealing interface that facilitates ease of use and seamless execution. Users can customize key variables such as the number of epochs, learning rates, number of clients, and quantum hyperparameters such as qubits and quantum layers, making the simulator suitable for various QFL applications. The system gives immediate feedback following each epoch by showing intermediate outcomes and dynamically illustrating learning curves. SimQFL is a practical and interactive platform enabling academics and developers to prototype, analyze, and tune quantum neural networks with greater transparency and control in distributed quantum networks.
Abstract:The rapid advancements in Artificial Intelligence, specifically Machine Learning (ML) and Deep Learning (DL), have opened new prospects in medical sciences for improved diagnosis, prognosis, and treatment of severe health conditions. This paper focuses on the development of an ML model with high predictive accuracy to classify arrhythmic electrocardiogram (ECG) signals. The ECG signals datasets utilized in this study were sourced from the PhysioNet and MIT-BIH databases. The research commenced with binary classification, where an optimized Bidirectional Long Short-Term Memory (Bi-LSTM) model yielded excellent results in differentiating normal and atrial fibrillation signals. A pivotal aspect of this research was a survey among medical professionals, which not only validated the practicality of AI-based ECG classifiers but also identified areas for improvement, including accuracy and the inclusion of more arrhythmia types. These insights drove the development of an advanced Convolutional Neural Network (CNN) system capable of classifying five different types of ECG signals with better accuracy and precision. The CNN model's robust performance was ensured through rigorous stratified 5-fold cross validation. A web portal was also developed to demonstrate real-world utility, offering access to the trained model for real-time classification. This study highlights the potential applications of such models in remote health monitoring, predictive healthcare, assistive diagnostic tools, and simulated environments for educational training and interdisciplinary collaboration between data scientists and medical personnel.