Abstract:The fashion industry is an extremely profitable market that generates trillions of dollars in revenue by producing and distributing apparel, footwear, and accessories. This systematic literature review (SLR) seeks to systematically review and analyze the research landscape about the Generative Artificial Intelligence (GAI) and metaverse in the fashion industry. Thus, investigating the impact of integrating both technologies to enhance the fashion industry. This systematic review uses the Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) methodology, including three essential phases: identification, evaluation, and reporting. In the identification phase, the target search problems are determined by selecting appropriate keywords and alternative synonyms. After that 578 documents from 2014 to the end of 2023 are retrieved. The evaluation phase applies three screening steps to assess papers and choose 118 eligible papers for full-text reading. Finally, the reporting phase thoroughly examines and synthesizes the 118 eligible papers to identify key themes associated with GAI and Metaverse in the fashion industry. Based on Strengths, Weaknesses, Opportunities, and Threats (SWOT) analyses performed for both GAI and metaverse for the fashion industry, it is concluded that the integration of GAI and the metaverse holds the capacity to profoundly revolutionize the fashion sector, presenting chances for improved manufacturing, design, sales, and client experiences. Accordingly, the research proposes a new framework to integrate GAI and metaverse to enhance the fashion industry. The framework presents different use cases to promote the fashion industry using the integration. Future research points for achieving a successful integration are demonstrated.
Abstract:The lack of a standard muzzle print database is a challenge for conducting researches in Arabian horse identification systems. Therefore, collecting a muzzle print images database is a crucial decision. The dataset presented in this paper is an option for the studies that need a dataset for testing and comparing the algorithms under development for Arabian horse identification. Our collected dataset consists of 300 color images that were collected from 50 Arabian horse muzzle species. This dataset has been collected from 50 Arabian horses with 6 muzzle print images each. A special care has been given to the quality of the collected images. The collected images cover different quality levels and degradation factors such as image rotation and image partiality for simulating real time identification operations. This dataset can be used to test the identification of Arabian horse system including the extracted features and the selected classifier.