Abstract:Advances in Automation and Artificial Intelligence continue to enhance the autonomy of process plants in handling various operational scenarios. However, certain tasks, such as fault handling, remain challenging, as they rely heavily on human expertise. This highlights the need for systematic, knowledge-based methods. To address this gap, we propose a methodological framework that integrates Large Language Model (LLM) agents with a Digital Twin environment. The LLM agents continuously interpret system states and initiate control actions, including responses to unexpected faults, with the goal of returning the system to normal operation. In this context, the Digital Twin acts both as a structured repository of plant-specific engineering knowledge for agent prompting and as a simulation platform for the systematic validation and verification of the generated corrective control actions. The evaluation using a mixing module of a process plant demonstrates that the proposed framework is capable not only of autonomously controlling the mixing module, but also of generating effective corrective actions to mitigate a pipe clogging with only a few reprompts.
Abstract:While there exist approaches to integrate heterogeneous data using semantic models, such semantic models can typically not be used by existing software tools. Many software tools - especially in engineering - only have options to import and export data in more established data interchange formats such as XML or JSON. Thus, if an information which is included in a semantic model needs to be used in a such a software tool, automatic approaches for mapping semantic information into an interchange format are needed. We aim to develop a generic mapping approach that allows users to create transformations of semantic information into a data interchange format with an arbitrary structure which can be defined by a user. This mapping approach is currently being elaborated. In this contribution, we report our initial steps targeted to transformations from RDF into XML. At first, a mapping language is introduced which allows to define automated mappings from ontologies to XML. Furthermore, a mapping algorithm capable of executing mappings defined in this language is presented. An evaluation is done with a use case in which engineering information needs to be used in a 3D modeling tool.