Abstract:Agent-based models (ABMs) are a promising approach to modelling and reasoning about complex systems, yet their application in practice is impeded by their complexity, discrete nature, and the difficulty of performing parameter inference and optimisation tasks. This in turn has sparked interest in the construction of differentiable ABMs as a strategy for combatting these difficulties, yet a number of challenges remain. In this paper, we discuss and present experiments that highlight some of these challenges, along with potential solutions.
Abstract:Agent-based modelling (ABMing) is a powerful and intuitive approach to modelling complex systems; however, the intractability of ABMs' likelihood functions and the non-differentiability of the mathematical operations comprising these models present a challenge to their use in the real world. These difficulties have in turn generated research on approximate Bayesian inference methods for ABMs and on constructing differentiable approximations to arbitrary ABMs, but little work has been directed towards designing approximate Bayesian inference techniques for the specific case of differentiable ABMs. In this work, we aim to address this gap and discuss how generalised variational inference procedures may be employed to provide misspecification-robust Bayesian parameter inferences for differentiable ABMs. We demonstrate with experiments on a differentiable ABM of the COVID-19 pandemic that our approach can result in accurate inferences, and discuss avenues for future work.
Abstract:X-Ray image enhancement, along with many other medical image processing applications, requires the segmentation of images into bone, soft tissue, and open beam regions. We apply a machine learning approach to this problem, presenting an end-to-end solution which results in robust and efficient inference. Since medical institutions frequently do not have the resources to process and label the large quantity of X-Ray images usually needed for neural network training, we design an end-to-end solution for small datasets, while achieving state-of-the-art results. Our implementation produces an overall accuracy of 92%, F1 score of 0.92, and an AUC of 0.98, surpassing classical image processing techniques, such as clustering and entropy based methods, while improving upon the output of existing neural networks used for segmentation in non-medical contexts. The code used for this project is available online.