Abstract:Accurate detection and segmentation of brain tumors from magnetic resonance imaging (MRI) are essential for diagnosis, treatment planning, and clinical monitoring. While convolutional architectures such as U-Net have long been the backbone of medical image segmentation, their limited capacity to capture long-range dependencies constrains performance on complex tumor structures. Recent advances in diffusion models have demonstrated strong potential for generating high-fidelity medical images and refining segmentation boundaries. In this work, we propose VGDM: Vision-Guided Diffusion Model for Brain Tumor Detection and Segmentation framework, a transformer-driven diffusion framework for brain tumor detection and segmentation. By embedding a vision transformer at the core of the diffusion process, the model leverages global contextual reasoning together with iterative denoising to enhance both volumetric accuracy and boundary precision. The transformer backbone enables more effective modeling of spatial relationships across entire MRI volumes, while diffusion refinement mitigates voxel-level errors and recovers fine-grained tumor details. This hybrid design provides a pathway toward improved robustness and scalability in neuro-oncology, moving beyond conventional U-Net baselines. Experimental validation on MRI brain tumor datasets demonstrates consistent gains in Dice similarity and Hausdorff distance, underscoring the potential of transformer-guided diffusion models to advance the state of the art in tumor segmentation.




Abstract:Graph neural network (GNN) explainers identify the important subgraph that ensures the prediction for a given graph. Until now, almost all GNN explainers are based on association, which is prone to spurious correlations. We propose {\name}, a GNN causal explainer via causal inference. Our explainer is based on the observation that a graph often consists of a causal underlying subgraph. {\name} includes three main steps: 1) It builds causal structure and the corresponding structural causal model (SCM) for a graph, which enables the cause-effect calculation among nodes. 2) Directly calculating the cause-effect in real-world graphs is computationally challenging. It is then enlightened by the recent neural causal model (NCM), a special type of SCM that is trainable, and design customized NCMs for GNNs. By training these GNN NCMs, the cause-effect can be easily calculated. 3) It uncovers the subgraph that causally explains the GNN predictions via the optimized GNN-NCMs. Evaluation results on multiple synthetic and real-world graphs validate that {\name} significantly outperforms existing GNN explainers in exact groundtruth explanation identification