Abstract:Classifier-guided diffusion models generate conditional samples by augmenting the reverse-time score with the gradient of the log-probability predicted by a probabilistic classifier. In practice, this classifier is usually obtained by minimizing an empirical loss function. While existing statistical theory guarantees good generalization performance when the sample size is sufficiently large, it remains unclear whether such training yields an effective guidance mechanism. We study this question in the context of cross-entropy loss, which is widely used for classifier training. Under mild smoothness assumptions on the classifier, we show that controlling the cross-entropy at each diffusion model step is sufficient to control the corresponding guidance error. In particular, probabilistic classifiers achieving conditional KL divergence $\varepsilon^2$ induce guidance vectors with mean squared error $\widetilde O(d \varepsilon )$, up to constant and logarithmic factors. Our result yields an upper bound on the sampling error of classifier-guided diffusion models and bears resemblance to a reverse log-Sobolev--type inequality. To the best of our knowledge, this is the first result that quantitatively links classifier training to guidance alignment in diffusion models, providing both a theoretical explanation for the empirical success of classifier guidance, and principled guidelines for selecting classifiers that induce effective guidance.
Abstract:Classifier-guided diffusion models generate conditional samples by augmenting the reverse-time score with the gradient of a learned classifier, yet it remains unclear whether standard classifier training procedures yield effective diffusion guidance. We address this gap by showing that, under mild smoothness assumptions on the classifiers, controlling the cross-entropy error at each diffusion step also controls the error of the resulting guidance vectors: classifiers achieving conditional KL divergence $\varepsilon^2$ from the ground-truth conditional label probabilities induce guidance vectors with mean squared error $\widetilde{O}(d \varepsilon )$. Our result yields an upper bound on the sampling error under classifier guidance and bears resemblance to a reverse log-Sobolev-type inequality. Moreover, we show that the classifier smoothness assumption is essential, by constructing simple counterexamples demonstrating that, without it, control of the guidance vector can fail for almost all distributions. To our knowledge, our work establishes the first quantitative link between classifier training and guidance alignment, yielding both a theoretical foundation for classifier guidance and principled guidelines for classifier selection.