Abstract:Data-Driven Product Development (DDPD) leverages data to learn the relationship between product design specifications and resulting properties. To discover improved designs, we train a neural network on past experiments and apply Projected Gradient Descent to identify optimal input features that maximize performance. Since many products require simultaneous optimization of multiple correlated properties, our framework employs joint neural networks to capture interdependencies among targets. Furthermore, we integrate uncertainty estimation via \emph{Conformalised Monte Carlo Dropout} (ConfMC), a novel method combining Nested Conformal Prediction with Monte Carlo dropout to provide model-agnostic, finite-sample coverage guarantees under data exchangeability. Extensive experiments on five real-world datasets show that our method matches state-of-the-art performance while offering adaptive, non-uniform prediction intervals and eliminating the need for retraining when adjusting coverage levels.
Abstract:In a recent work we have shown how to construct an information algebra of coherent sets of gambles defined on general possibility spaces. Here we analyze the connection of such an algebra with the set algebra of subsets of the possibility space on which gambles are defined and the set algebra of sets of its atoms. Set algebras are particularly important information algebras since they are their prototypical structures. Furthermore, they are the algebraic counterparts of classical propositional logic. As a consequence, this paper also details how propositional logic is naturally embedded into the theory of imprecise probabilities.
Abstract:In this paper, we show that coherent sets of gambles can be embedded into the algebraic structure of information algebra. This leads firstly, to a new perspective of the algebraic and logical structure of desirability and secondly, it connects desirability, hence imprecise probabilities, to other formalism in computer science sharing the same underlying structure. Both the domain-free and the labeled view of the information algebra of coherent sets of gambles are presented, considering general possibility spaces.
Abstract:In this paper, we show that coherent sets of gambles can be embedded into the algebraic structure of information algebra. This leads firstly, to a new perspective of the algebraic and logical structure of desirability and secondly, it connects desirability, hence imprecise probabilities, to other formalism in computer science sharing the same underlying structure. Both the domain free and the labeled view of the information algebra of coherent sets of gambles are presented, considering a special case of possibility space.