Abstract:Recent safety evaluations of Large Language Models (LLMs) show that many models exhibit dishonest behavior, such as sycophancy. However, most honesty benchmarks focus exclusively on factual knowledge or explicitly harmful behavior and rely on external judges, which are often unable to detect less obvious forms of dishonesty. In this work, we introduce a new framework, Judge Using Safety-Steered Alternatives (JUSSA), which utilizes steering vectors trained on a single sample to elicit more honest responses from models, helping LLM-judges in the detection of dishonest behavior. To test our framework, we introduce a new manipulation dataset with prompts specifically designed to elicit deceptive responses. We find that JUSSA enables LLM judges to better differentiate between dishonest and benign responses, and helps them identify subtle instances of manipulative behavior.
Abstract:While Large Language Models (LLMs) are fundamentally next-token prediction systems, their practical applications extend far beyond this basic function. From natural language processing and text generation to conversational assistants and software use, LLMs have numerous use-cases, and have already acquired a significant degree of enterprise adoption. To evaluate such models, static evaluation datasets, consisting of a set of prompts and their corresponding ground truths, are often used to benchmark the efficacy of the model for a particular task. In this paper, we provide the basis for a more comprehensive evaluation framework, based upon a traditional game and tool-based architecture that enables a more overarching measurement of a model's capabilities. For simplicity, we provide a generalized foundation that can be extended, without significant alteration, to numerous scenarios, from specific use cases such as supply chain management or financial reasoning, to abstract measurements such as ethics or safety.