Abstract:Zero-Shot Stance Detection (ZSSD) identifies the attitude of the post toward unseen targets. Existing research using contrastive, meta-learning, or data augmentation suffers from generalizability issues or lack of coherence between text and target. Recent works leveraging large language models (LLMs) for ZSSD focus either on improving unseen target-specific knowledge or generating explanations for stance analysis. However, most of these works are limited by their over-reliance on explicit reasoning, provide coarse explanations that lack nuance, and do not explicitly model the reasoning process, making it difficult to interpret the model's predictions. To address these issues, in our study, we develop a novel interpretable ZSSD framework, IRIS. We provide an interpretable understanding of the attitude of the input towards the target implicitly based on sequences within the text (implicit rationales) and explicitly based on linguistic measures (explicit rationales). IRIS considers stance detection as an information retrieval ranking task, understanding the relevance of implicit rationales for different stances to guide the model towards correct predictions without requiring the ground-truth of rationales, thus providing inherent interpretability. In addition, explicit rationales based on communicative features help decode the emotional and cognitive dimensions of stance, offering an interpretable understanding of the author's attitude towards the given target. Extensive experiments on the benchmark datasets of VAST, EZ-STANCE, P-Stance, and RFD using 50%, 30%, and even 10% training data prove the generalizability of our model, benefiting from the proposed architecture and interpretable design.
Abstract:Climate change has become one of the biggest challenges of our time. Social media platforms such as Twitter play an important role in raising public awareness and spreading knowledge about the dangers of the current climate crisis. With the increasing number of campaigns and communication about climate change through social media, the information could create more awareness and reach the general public and policy makers. However, these Twitter communications lead to polarization of beliefs, opinion-dominated ideologies, and often a split into two communities of climate change deniers and believers. In this paper, we propose a framework that helps identify denier statements on Twitter and thus classifies the stance of the tweet into one of the two attitudes towards climate change (denier/believer). The sentimental aspects of Twitter data on climate change are deeply rooted in general public attitudes toward climate change. Therefore, our work focuses on learning two closely related tasks: Stance Detection and Sentiment Analysis of climate change tweets. We propose a multi-task framework that performs stance detection (primary task) and sentiment analysis (auxiliary task) simultaneously. The proposed model incorporates the feature-specific and shared-specific attention frameworks to fuse multiple features and learn the generalized features for both tasks. The experimental results show that the proposed framework increases the performance of the primary task, i.e., stance detection by benefiting from the auxiliary task, i.e., sentiment analysis compared to its uni-modal and single-task variants.