Abstract:Integrating Large Language Models (LLMs) and Evolutionary Computation (EC) represents a promising avenue for advancing artificial intelligence by combining powerful natural language understanding with optimization and search capabilities. This manuscript explores the synergistic potential of LLMs and EC, reviewing their intersections, complementary strengths, and emerging applications. We identify key opportunities where EC can enhance LLM training, fine-tuning, prompt engineering, and architecture search, while LLMs can, in turn, aid in automating the design, analysis, and interpretation of ECs. The manuscript explores the synergistic integration of EC and LLMs, highlighting their bidirectional contributions to advancing artificial intelligence. It first examines how EC techniques enhance LLMs by optimizing key components such as prompt engineering, hyperparameter tuning, and architecture search, demonstrating how evolutionary methods automate and refine these processes. Secondly, the survey investigates how LLMs improve EC by automating metaheuristic design, tuning evolutionary algorithms, and generating adaptive heuristics, thereby increasing efficiency and scalability. Emerging co-evolutionary frameworks are discussed, showcasing applications across diverse fields while acknowledging challenges like computational costs, interpretability, and algorithmic convergence. The survey concludes by identifying open research questions and advocating for hybrid approaches that combine the strengths of EC and LLMs.
Abstract:Swarm intelligence effectively optimizes complex systems across fields like engineering and healthcare, yet algorithm solutions often suffer from low reliability due to unclear configurations and hyperparameters. This study analyzes Particle Swarm Optimization (PSO), focusing on how different communication topologies Ring, Star, and Von Neumann affect convergence and search behaviors. Using an adapted IOHxplainer , an explainable benchmarking tool, we investigate how these topologies influence information flow, diversity, and convergence speed, clarifying the balance between exploration and exploitation. Through visualization and statistical analysis, the research enhances interpretability of PSO's decisions and provides practical guidelines for choosing suitable topologies for specific optimization tasks. Ultimately, this contributes to making swarm based optimization more transparent, robust, and trustworthy.
Abstract:Industrial and reliability optimization problems often involve complex constraints and require efficient, interpretable solutions. This paper presents AI-AEFA, an advanced parameter reconfiguration-based metaheuristic algorithm designed to address large-scale industrial and reliability-redundancy allocation problems. AI-AEFA enhances search space exploration and convergence efficiency through a novel log-sigmoid-based parameter adaptation and chaotic mapping mechanism. The algorithm is validated across twenty-eight IEEE CEC 2017 constrained benchmark problems, fifteen large-scale industrial optimization problems, and seven reliability-redundancy allocation problems, consistently outperforming state-of-the-art optimization techniques in terms of feasibility, computational efficiency, and convergence speed. The additional key contribution of this work is the integration of SHAP (Shapley Additive Explanations) to enhance the interpretability of AI-AEFA, providing insights into the impact of key parameters such as Coulomb's constant, charge, acceleration, and electrostatic force. This explainability feature enables a deeper understanding of decision-making within the AI-AEFA framework during the optimization processes. The findings confirm AI-AEFA as a robust, scalable, and interpretable optimization tool with significant real-world applications.
Abstract:Multi-modal optimization involves identifying multiple global and local optima of a function, offering valuable insights into diverse optimal solutions within the search space. Evolutionary algorithms (EAs) excel at finding multiple solutions in a single run, providing a distinct advantage over classical optimization techniques that often require multiple restarts without guarantee of obtaining diverse solutions. Among these EAs, differential evolution (DE) stands out as a powerful and versatile optimizer for continuous parameter spaces. DE has shown significant success in multi-modal optimization by utilizing its population-based search to promote the formation of multiple stable subpopulations, each targeting different optima. Recent advancements in DE for multi-modal optimization have focused on niching methods, parameter adaptation, hybridization with other algorithms including machine learning, and applications across various domains. Given these developments, it is an opportune moment to present a critical review of the latest literature and identify key future research directions. This paper offers a comprehensive overview of recent DE advancements in multimodal optimization, including methods for handling multiple optima, hybridization with EAs, and machine learning, and highlights a range of real-world applications. Additionally, the paper outlines a set of compelling open problems and future research issues from multiple perspectives