Abstract:Text-to-image (T2I) diffusion models generate high-quality images but often fail to capture the spatial relations specified in text prompts. This limitation can be traced to two factors: lack of fine-grained spatial supervision in training data and inability of text embeddings to encode spatial semantics. We introduce InfSplign, a training-free inference-time method that improves spatial alignment by adjusting the noise through a compound loss in every denoising step. Proposed loss leverages different levels of cross-attention maps extracted from the backbone decoder to enforce accurate object placement and a balanced object presence during sampling. The method is lightweight, plug-and-play, and compatible with any diffusion backbone. Our comprehensive evaluations on VISOR and T2I-CompBench show that InfSplign establishes a new state-of-the-art (to the best of our knowledge), achieving substantial performance gains over the strongest existing inference-time baselines and even outperforming the fine-tuning-based methods. Codebase is available at GitHub.
Abstract:Aligning diffusion model outputs with downstream objectives is essential for improving task-specific performance. Broadly, inference-time training-free approaches for aligning diffusion models can be categorized into two main strategies: sampling-based methods, which explore multiple candidate outputs and select those with higher reward signals, and gradient-guided methods, which use differentiable reward approximations to directly steer the generation process. In this work, we propose a universal algorithm, UniCoDe, which brings together the strengths of sampling and gradient-based guidance into a unified framework. UniCoDe integrates local gradient signals during sampling, thereby addressing the sampling inefficiency inherent in complex reward-based sampling approaches. By cohesively combining these two paradigms, UniCoDe enables more efficient sampling while offering better trade-offs between reward alignment and divergence from the diffusion unconditional prior. Empirical results demonstrate that UniCoDe remains competitive with state-of-the-art baselines across a range of tasks. The code is available at https://github.com/maurya-goyal10/UniCoDe
Abstract:Aligning diffusion models to downstream tasks often requires finetuning new models or gradient-based guidance at inference time to enable sampling from the reward-tilted posterior. In this work, we explore a simple inference-time gradient-free guidance approach, called controlled denoising (CoDe), that circumvents the need for differentiable guidance functions and model finetuning. CoDe is a blockwise sampling method applied during intermediate denoising steps, allowing for alignment with downstream rewards. Our experiments demonstrate that, despite its simplicity, CoDe offers a favorable trade-off between reward alignment, prompt instruction following, and inference cost, achieving a competitive performance against the state-of-the-art baselines. Our code is available at: https://github.com/anujinho/code.
Abstract:Masked Autoencoders (MAEs) are an important divide in self-supervised learning (SSL) due to their independence from augmentation techniques for generating positive (and/or negative) pairs as in contrastive frameworks. Their masking and reconstruction strategy also nicely aligns with SSL approaches in natural language processing. Most MAEs are built upon Transformer-based architectures where visual features are not regularized as opposed to their convolutional neural network (CNN) based counterparts, which can potentially hinder their performance. To address this, we introduce MAGMA, a novel batch-wide layer-wise regularization loss applied to representations of different Transformer layers. We demonstrate that by plugging in the proposed regularization loss, one can significantly improve the performance of MAE-based models. We further demonstrate the impact of the proposed loss on optimizing other generic SSL approaches (such as VICReg and SimCLR), broadening the impact of the proposed approach. Our code base can be found at https://github.com/adondera/magma.




Abstract:Data augmentation is crucial in training deep models, preventing them from overfitting to limited data. Common data augmentation methods are effective, but recent advancements in generative AI, such as diffusion models for image generation, enable more sophisticated augmentation techniques that produce data resembling natural images. We recognize that augmented samples closer to the ideal decision boundary of a classifier are particularly effective and efficient in guiding the learning process. We introduce GeNIe which leverages a diffusion model conditioned on a text prompt to merge contrasting data points (an image from the source category and a text prompt from the target category) to generate challenging samples for the target category. Inspired by recent image editing methods, we limit the number of diffusion iterations and the amount of noise. This ensures that the generated image retains low-level and contextual features from the source image, potentially conflicting with the target category. Our extensive experiments, in few-shot and also long-tail distribution settings, demonstrate the effectiveness of our novel augmentation method, especially benefiting categories with a limited number of examples.




Abstract:Humans have a unique ability to learn new representations from just a handful of examples with little to no supervision. Deep learning models, however, require an abundance of data and supervision to perform at a satisfactory level. Unsupervised few-shot learning (U-FSL) is the pursuit of bridging this gap between machines and humans. Inspired by the capacity of graph neural networks (GNNs) in discovering complex inter-sample relationships, we propose a novel self-attention based message passing contrastive learning approach (coined as SAMP-CLR) for U-FSL pre-training. We also propose an optimal transport (OT) based fine-tuning strategy (we call OpT-Tune) to efficiently induce task awareness into our novel end-to-end unsupervised few-shot classification framework (SAMPTransfer). Our extensive experimental results corroborate the efficacy of SAMPTransfer in a variety of downstream few-shot classification scenarios, setting a new state-of-the-art for U-FSL on both miniImagenet and tieredImagenet benchmarks, offering up to 7%+ and 5%+ improvements, respectively. Our further investigations also confirm that SAMPTransfer remains on-par with some supervised baselines on miniImagenet and outperforms all existing U-FSL baselines in a challenging cross-domain scenario. Our code can be found in our GitHub repository at https://github.com/ojss/SAMPTransfer/.




Abstract:The versatility to learn from a handful of samples is the hallmark of human intelligence. Few-shot learning is an endeavour to transcend this capability down to machines. Inspired by the promise and power of probabilistic deep learning, we propose a novel variational inference network for few-shot classification (coined as TRIDENT) to decouple the representation of an image into semantic and label latent variables, and simultaneously infer them in an intertwined fashion. To induce task-awareness, as part of the inference mechanics of TRIDENT, we exploit information across both query and support images of a few-shot task using a novel built-in attention-based transductive feature extraction module (we call AttFEX). Our extensive experimental results corroborate the efficacy of TRIDENT and demonstrate that, using the simplest of backbones, it sets a new state-of-the-art in the most commonly adopted datasets miniImageNet and tieredImageNet (offering up to 4% and 5% improvements, respectively), as well as for the recent challenging cross-domain miniImagenet --> CUB scenario offering a significant margin (up to 20% improvement) beyond the best existing cross-domain baselines. Code and experimentation can be found in our GitHub repository: https://github.com/anujinho/trident