Abstract:Autoregressive patch-based image generation has recently shown competitive results in terms of image quality and scalability. It can also be easily integrated and scaled within Vision-Language models. Nevertheless, autoregressive models require a defined order for patch generation. While a natural order based on the dictation of the words makes sense for text generation, there is no inherent generation order that exists for image generation. Traditionally, a raster-scan order (from top-left to bottom-right) guides autoregressive image generation models. In this paper, we argue that this order is suboptimal, as it fails to respect the causality of the image content: for instance, when conditioned on a visual description of a sunset, an autoregressive model may generate clouds before the sun, even though the color of clouds should depend on the color of the sun and not the inverse. In this work, we show that first by training a model to generate patches in any-given-order, we can infer both the content and the location (order) of each patch during generation. Secondly, we use these extracted orders to finetune the any-given-order model to produce better-quality images. Through our experiments, we show on two datasets that this new generation method produces better images than the traditional raster-scan approach, with similar training costs and no extra annotations.
Abstract:The proliferation of debris in Low Earth Orbit (LEO) represents a significant threat to space sustainability and spacecraft safety. Active Debris Removal (ADR) has emerged as a promising approach to address this issue, utilising Orbital Transfer Vehicles (OTVs) to facilitate debris deorbiting, thereby reducing future collision risks. However, ADR missions are substantially complex, necessitating accurate planning to make the missions economically viable and technically effective. Moreover, these servicing missions require a high level of autonomous capability to plan under evolving orbital conditions and changing mission requirements. In this paper, an autonomous decision-planning model based on Deep Reinforcement Learning (DRL) is developed to train an OTV to plan optimal debris removal sequencing. It is shown that using the proposed framework, the agent can find optimal mission plans and learn to update the planning autonomously to include risk handling of debris with high collision risk.