Abstract:This paper examines whether large language model (LLM) capabilities can continue to advance without additional compute by analyzing the development and role of algorithms used in state-of-the-art LLMs. Motivated by regulatory efforts that have largely focused on restricting access to high-performance hardware, we ask: Can LLMs progress in a compute-constrained environment, and how do algorithmic innovations perform under such conditions? To address these questions, we introduce a novel classification framework that distinguishes between compute-dependent innovations -- which yield disproportionate benefits at high compute levels (e.g., the Transformer architecture and mixture-of-experts models) and compute-independent innovations, which improve efficiency across all compute scales (e.g., rotary positional encoding, FlashAttention, or layer normalization). We quantify these contributions using a metric called compute-equivalent gain (CEG), which estimates the additional compute that would be required to achieve similar improvements without these algorithmic advancements. To validate this framework, we conduct small-scale training experiments with a scaled-down GPT-2 model. Our results confirm that compute-independent advancements yield meaningful performance gains even in resource-constrained settings, with a CEG of up to $3.5\times$ over a baseline model. By contrast, compute-dependent advancements provided little benefit or even degraded performance at the small scale, reinforcing the importance of compute availability for certain algorithmic gains.
Abstract:Collaborative perception allows real-time inter-agent information exchange and thus offers invaluable opportunities to enhance the perception capabilities of individual agents. However, limited communication bandwidth in practical scenarios restricts the inter-agent data transmission volume, consequently resulting in performance declines in collaborative perception systems. This implies a trade-off between perception performance and communication cost. To address this issue, we propose Which2comm, a novel multi-agent 3D object detection framework leveraging object-level sparse features. By integrating semantic information of objects into 3D object detection boxes, we introduce semantic detection boxes (SemDBs). Innovatively transmitting these information-rich object-level sparse features among agents not only significantly reduces the demanding communication volume, but also improves 3D object detection performance. Specifically, a fully sparse network is constructed to extract SemDBs from individual agents; a temporal fusion approach with a relative temporal encoding mechanism is utilized to obtain the comprehensive spatiotemporal features. Extensive experiments on the V2XSet and OPV2V datasets demonstrate that Which2comm consistently outperforms other state-of-the-art methods on both perception performance and communication cost, exhibiting better robustness to real-world latency. These results present that for multi-agent collaborative 3D object detection, transmitting only object-level sparse features is sufficient to achieve high-precision and robust performance.