Abstract:In this paper, we address the basic problem of recognizing moving objects in video images using Visual Vocabulary model and Bag of Words and track our object of interest in the subsequent video frames using species inspired PSO. Initially, the shadow free images are obtained by background modelling followed by foreground modeling to extract the blobs of our object of interest. Subsequently, we train a cubic SVM with human body datasets in accordance with our domain of interest for recognition and tracking. During training, using the principle of Bag of Words we extract necessary features of certain domains and objects for classification. Subsequently, matching these feature sets with those of the extracted object blobs that are obtained by subtracting the shadow free background from the foreground, we detect successfully our object of interest from the test domain. The performance of the classification by cubic SVM is satisfactorily represented by confusion matrix and ROC curve reflecting the accuracy of each module. After classification, our object of interest is tracked in the test domain using species inspired PSO. By combining the adaptive learning tools with the efficient classification of description, we achieve optimum accuracy in recognition of the moving objects. We evaluate our algorithm benchmark datasets: iLIDS, VIVID, Walking2, Woman. Comparative analysis of our algorithm against the existing state-of-the-art trackers shows very satisfactory and competitive results.
Abstract:In this paper, we address the basic problem of recognizing moving objects in video images using SP Theory of Intelligence. The concept of SP Theory of Intelligence which is a framework of artificial intelligence, was first introduced by Gerard J Wolff, where S stands for Simplicity and P stands for Power. Using the concept of multiple alignment, we detect and recognize object of our interest in video frames with multilevel hierarchical parts and subparts, based on polythetic categories. We track the recognized objects using the species based Particle Swarm Optimization (PSO). First, we extract the multiple alignment of our object of interest from training images. In order to recognize accurately and handle occlusion, we use the polythetic concepts on raw data line to omit the redundant noise via searching for best alignment representing the features from the extracted alignments. We recognize the domain of interest from the video scenes in form of wide variety of multiple alignments to handle scene variability. Unsupervised learning is done in the SP model following the DONSVIC principle and natural structures are discovered via information compression and pattern analysis. After successful recognition of objects, we use species based PSO algorithm as the alignments of our object of interest is analogues to observation likelihood and fitness ability of species. Subsequently, we analyze the competition and repulsion among species with annealed Gaussian based PSO. We have tested our algorithms on David, Walking2, FaceOcc1, Jogging and Dudek, obtaining very satisfactory and competitive results.