Abstract:The global water crisis necessitates affordable, accurate, and real-time water quality monitoring solutions. Traditional approaches relying on manual sampling or expensive commercial systems fail to address accessibility challenges in resource-constrained environments. This paper presents HydroSense, an innovative Internet of Things framework that integrates six critical water quality parameters including pH, dissolved oxygen (DO), temperature, total dissolved solids (TDS), estimated nitrogen, and water level into a unified monitoring system. HydroSense employs a novel dual-microcontroller architecture, utilizing Arduino Uno for precision analog measurements with five-point calibration algorithms and ESP32 for wireless connectivity, edge processing, and cloud integration. The system implements advanced signal processing techniques including median filtering for TDS measurement, temperature compensation algorithms, and robust error handling. Experimental validation over 90 days demonstrates exceptional performance metrics: pH accuracy of plus or minus 0.08 units across the 0 to 14 range, DO measurement stability within plus or minus 0.2 mg/L, TDS accuracy of plus or minus 1.9 percent across 0 to 1000 ppm, and 99.8 percent cloud data transmission reliability. With a total implementation cost of 32,983 BDT (approximately 300 USD), HydroSense achieves an 85 percent cost reduction compared to commercial systems while providing enhanced connectivity through the Firebase real-time database. This research establishes a new paradigm for accessible environmental monitoring, demonstrating that professional-grade water quality assessment can be achieved through intelligent system architecture and cost-effective component selection.
Abstract:The integration of physical security systems with environmental safety monitoring represents a critical advancement in smart infrastructure management. Traditional approaches maintain these systems as independent silos, creating operational inefficiencies, delayed emergency responses, and increased management complexity. This paper presents a comprehensive dual-modality Internet of Things framework that seamlessly integrates RFID-based access control with multi-sensor environmental safety monitoring through a unified cloud architecture. The system comprises two coordinated subsystems: Subsystem 1 implements RFID authentication with servo-actuated gate control and real-time Google Sheets logging, while Subsystem 2 provides comprehensive safety monitoring incorporating flame detection, water flow measurement, LCD status display, and personnel identification. Both subsystems utilize ESP32 microcontrollers for edge processing and wireless connectivity. Experimental evaluation over 45 days demonstrates exceptional performance metrics: 99.2\% RFID authentication accuracy with 0.82-second average response time, 98.5\% flame detection reliability within 5-meter range, and 99.8\% cloud data logging success rate. The system maintains operational integrity during network disruptions through intelligent local caching mechanisms and achieves total implementation cost of 5,400 BDT (approximately \$48), representing an 82\% reduction compared to commercial integrated solutions. This research establishes a practical framework for synergistic security-safety integration, demonstrating that professional-grade performance can be achieved through careful architectural design and component optimization while maintaining exceptional cost-effectiveness and accessibility for diverse application scenarios.