Abstract:Circuit discovery and activation steering in transformers have developed as separate research threads, yet both operate on the same representational space. Are they two views of the same underlying structure? We show they follow a single geometric principle: answer tokens, processed in isolation, encode the directions that would produce them. This Circuit Fingerprint hypothesis enables circuit discovery without gradients or causal intervention -- recovering comparable structure to gradient-based methods through geometric alignment alone. We validate this on standard benchmarks (IOI, SVA, MCQA) across four model families, achieving circuit discovery performance comparable to gradient-based methods. The same directions that identify circuit components also enable controlled steering -- achieving 69.8\% emotion classification accuracy versus 53.1\% for instruction prompting while preserving factual accuracy. Beyond method development, this read-write duality reveals that transformer circuits are fundamentally geometric structures: interpretability and controllability are two facets of the same object.
Abstract:Linear probes and sparse autoencoders consistently recover meaningful structure from transformer representations -- yet why should such simple methods succeed in deep, nonlinear systems? We show this is not merely an empirical regularity but a consequence of architectural necessity: transformers communicate information through linear interfaces (attention OV circuits, unembedding matrices), and any semantic feature decoded through such an interface must occupy a context-invariant linear subspace. We formalize this as the \emph{Invariant Subspace Necessity} theorem and derive the \emph{Self-Reference Property}: tokens directly provide the geometric direction for their associated features, enabling zero-shot identification of semantic structure without labeled data or learned probes. Empirical validation in eight classification tasks and four model families confirms the alignment between class tokens and semantically related instances. Our framework provides \textbf{a principled architectural explanation} for why linear interpretability methods work, unifying linear probes and sparse autoencoders.