Abstract:Scaling foundation model training with Distributed Data Parallel (DDP) methods is bandwidth-limited. Existing infrequent communication methods like Local SGD were designed to synchronize only model parameters and cannot be trivially applied to adaptive optimizers due to additional optimizer states. Current approaches extending Local SGD either lack convergence guarantees or require synchronizing all optimizer states, tripling communication costs. We propose Desynced Low Communication Adaptive Optimizers (DES-LOC), a family of optimizers assigning independent synchronization periods to parameters and momenta, enabling lower communication costs while preserving convergence. Through extensive experiments on language models of up to 1.7B, we show that DES-LOC can communicate 170x less than DDP and 2x less than the previous state-of-the-art Local ADAM. Furthermore, unlike previous heuristic approaches, DES-LOC is suited for practical training scenarios prone to system failures. DES-LOC offers a scalable, bandwidth-efficient, and fault-tolerant solution for foundation model training.
Abstract:The recent surge in high-quality open-sourced Generative AI text models (colloquially: LLMs), as well as efficient finetuning techniques, has opened the possibility of creating high-quality personalized models, i.e., models generating text attuned to a specific individual's needs and capable of credibly imitating their writing style by leveraging that person's own data to refine an open-source model. The technology to create such models is accessible to private individuals, and training and running such models can be done cheaply on consumer-grade hardware. These advancements are a huge gain for usability and privacy. This position paper argues, however, that these advancements also introduce new safety risks by making it practically feasible for malicious actors to impersonate specific individuals at scale, for instance for the purpose of phishing emails, based on small amounts of publicly available text. We further argue that these risks are complementary to - and distinct from - the much-discussed risks of other impersonation attacks such as image, voice, or video deepfakes, and are not adequately addressed by the larger research community, or the current generation of open - and closed-source models.