Abstract:Early-exit mechanisms allow deep neural networks to halt inference as soon as classification confidence is high enough, adaptively trading depth for confidence, and thereby cutting latency and energy on easy inputs while retaining full-depth accuracy for harder ones. Similarly, adding early exit mechanisms to Graph Neural Networks (GNNs), the go-to models for graph-structured data, allows for dynamic trading depth for confidence on simple graphs while maintaining full-depth accuracy on harder and more complex graphs to capture intricate relationships. Although early exits have proven effective across various deep learning domains, their potential within GNNs in scenarios that require deep architectures while resisting over-smoothing and over-squashing remains largely unexplored. We unlock that potential by first introducing Symmetric-Anti-Symmetric Graph Neural Networks (SAS-GNN), whose symmetry-based inductive biases mitigate these issues and yield stable intermediate representations that can be useful to allow early exiting in GNNs. Building on this backbone, we present Early-Exit Graph Neural Networks (EEGNNs), which append confidence-aware exit heads that allow on-the-fly termination of propagation based on each node or the entire graph. Experiments show that EEGNNs preserve robust performance as depth grows and deliver competitive accuracy on heterophilic and long-range benchmarks, matching attention-based and asynchronous message-passing models while substantially reducing computation and latency. We plan to release the code to reproduce our experiments.
Abstract:Graph Neural Networks (GNNs) are powerful at solving graph classification tasks, yet applied problems often contain noisy labels. In this work, we study GNN robustness to label noise, demonstrate GNN failure modes when models struggle to generalise on low-order graphs, low label coverage, or when a model is over-parameterized. We establish both empirical and theoretical links between GNN robustness and the reduction of the total Dirichlet Energy of learned node representations, which encapsulates the hypothesized GNN smoothness inductive bias. Finally, we introduce two training strategies to enhance GNN robustness: (1) by incorporating a novel inductive bias in the weight matrices through the removal of negative eigenvalues, connected to Dirichlet Energy minimization; (2) by extending to GNNs a loss penalty that promotes learned smoothness. Importantly, neither approach negatively impacts performance in noise-free settings, supporting our hypothesis that the source of GNNs robustness is their smoothness inductive bias.
Abstract:Re-ranking systems aim to reorder an initial list of documents to satisfy better the information needs associated with a user-provided query. Modern re-rankers predominantly rely on neural network models, which have proven highly effective in representing samples from various modalities. However, these models typically evaluate query-document pairs in isolation, neglecting the underlying document distribution that could enhance the quality of the re-ranked list. To address this limitation, we propose Graph Neural Re-Ranking (GNRR), a pipeline based on Graph Neural Networks (GNNs), that enables each query to consider documents distribution during inference. Our approach models document relationships through corpus subgraphs and encodes their representations using GNNs. Through extensive experiments, we demonstrate that GNNs effectively capture cross-document interactions, improving performance on popular ranking metrics. In TREC-DL19, we observe a relative improvement of 5.8% in Average Precision compared to our baseline. These findings suggest that integrating the GNN segment offers significant advantages, especially in scenarios where understanding the broader context of documents is crucial.
Abstract:In the past years, Graph Neural Networks (GNNs) have become the `de facto' standard in various deep learning domains, thanks to their flexibility in modeling real-world phenomena represented as graphs. However, the message-passing mechanism of GNNs faces challenges in learnability and expressivity, hindering high performance on heterophilic graphs, where adjacent nodes frequently have different labels. Most existing solutions addressing these challenges are primarily confined to specific benchmarks focused on node classification tasks. This narrow focus restricts the potential impact that link prediction under heterophily could offer in several applications, including recommender systems. For example, in social networks, two users may be connected for some latent reason, making it challenging to predict such connections in advance. Physics-Inspired GNNs such as GRAFF provided a significant contribution to enhance node classification performance under heterophily, thanks to the adoption of physics biases in the message-passing. Drawing inspiration from these findings, we advocate that the methodology employed by GRAFF can improve link prediction performance as well. To further explore this hypothesis, we introduce GRAFF-LP, an extension of GRAFF to link prediction. We evaluate its efficacy within a recent collection of heterophilic graphs, establishing a new benchmark for link prediction under heterophily. Our approach surpasses previous methods, in most of the datasets, showcasing a strong flexibility in different contexts, and achieving relative AUROC improvements of up to 26.7%.
Abstract:The artist similarity quest has become a crucial subject in social and scientific contexts. Modern research solutions facilitate music discovery according to user tastes. However, defining similarity among artists may involve several aspects, even related to a subjective perspective, and it often affects a recommendation. This paper presents GATSY, a recommendation system built upon graph attention networks and driven by a clusterized embedding of artists. The proposed framework takes advantage of a graph topology of the input data to achieve outstanding performance results without relying heavily on hand-crafted features. This flexibility allows us to introduce fictitious artists in a music dataset, create bridges to previously unrelated artists, and get recommendations conditioned by possibly heterogeneous sources. Experimental results prove the effectiveness of the proposed method with respect to state-of-the-art solutions.