Abstract:In this work we address the problem of training a Reinforcement Learning agent to follow multiple temporally-extended instructions expressed in Linear Temporal Logic in sub-symbolic environments. Previous multi-task work has mostly relied on knowledge of the mapping between raw observations and symbols appearing in the formulae. We drop this unrealistic assumption by jointly training a multi-task policy and a symbol grounder with the same experience. The symbol grounder is trained only from raw observations and sparse rewards via Neural Reward Machines in a semi-supervised fashion. Experiments on vision-based environments show that our method achieves performance comparable to using the true symbol grounding and significantly outperforms state-of-the-art methods for sub-symbolic environments.
Abstract:Solving hard-exploration environments in an important challenge in Reinforcement Learning. Several approaches have been proposed and studied, such as Intrinsic Motivation, co-evolution of agents and tasks, and multi-agent competition. In particular, the interplay between multiple agents has proven to be capable of generating human-relevant emergent behaviour that would be difficult or impossible to learn in single-agent settings. In this work, an extensible competitive environment for multi-agent interplay was developed, which features realistic physics and human-relevant semantics. Moreover, several experiments on different variants of this environment were performed, resulting in some simple emergent strategies and concrete directions for future improvement. The content presented here is part of the author's thesis "Multi-Agent Interplay in a Competitive Survival Environment" for the Master's Degree in Artificial Intelligence and Robotics at Sapienza University of Rome, 2022.