Abstract:Discrete choice models (DCMs) have long been used to analyze workplace location decisions, but they face challenges in accurately mirroring individual decision-making processes. This paper presents a deep neural network (DNN) method for modeling workplace location choices, which aims to better understand complex decision patterns and provides better results than traditional discrete choice models (DCMs). The study demonstrates that DNNs show significant potential as a robust alternative to DCMs in this domain. While both models effectively replicate the impact of job opportunities on workplace location choices, the DNN outperforms the DCM in certain aspects. However, the DCM better aligns with data when assessing the influence of individual attributes on workplace distance. Notably, DCMs excel at shorter distances, while DNNs perform comparably to both data and DCMs for longer distances. These findings underscore the importance of selecting the appropriate model based on specific application requirements in workplace location choice analysis.
Abstract:This paper presents a population synthesis model that utilizes the Wasserstein Generative-Adversarial Network (WGAN) for training on incomplete microsamples. By using a mask matrix to represent missing values, the study proposes a WGAN training algorithm that lets the model learn from a training dataset that has some missing information. The proposed method aims to address the challenge of missing information in microsamples on one or more attributes due to privacy concerns or data collection constraints. The paper contrasts WGAN models trained on incomplete microsamples with those trained on complete microsamples, creating a synthetic population. We conducted a series of evaluations of the proposed method using a Swedish national travel survey. We validate the efficacy of the proposed method by generating synthetic populations from all the models and comparing them to the actual population dataset. The results from the experiments showed that the proposed methodology successfully generates synthetic data that closely resembles a model trained with complete data as well as the actual population. The paper contributes to the field by providing a robust solution for population synthesis with incomplete data, opening avenues for future research, and highlighting the potential of deep generative models in advancing population synthesis capabilities.
Abstract:Traffic State Estimation (TSE) is the process of inferring traffic conditions based on partially observed data using prior knowledge of traffic patterns. The type of input data used has a significant impact on the accuracy and methodology of TSE. Traditional TSE methods have relied on data from either stationary sensors like loop detectors or mobile sensors such as GPS-equipped floating cars. However, both approaches have their limitations. This paper proposes a method for estimating traffic states on a road link using vehicle trajectories obtained from cameras mounted on moving vehicles. It involves combining data from multiple moving cameras to construct time-space diagrams and using them to estimate parameters for the link's fundamental diagram (FD) and densities in unobserved regions of space-time. The Cell Transmission Model (CTM) is utilized in conjunction with a Genetic Algorithm (GA) to optimize the FD parameters and boundary conditions necessary for accurate estimation. To evaluate the effectiveness of the proposed methodology, simulated traffic data generated by the SUMO traffic simulator was employed incorporating 140 different space-time diagrams with varying lane density and speed. The evaluation of the simulated data demonstrates the effectiveness of the proposed approach, as it achieves a low root mean square error (RMSE) value of 0.0079 veh/m and is comparable to other CTM-based methods. In conclusion, the proposed TSE method opens new avenues for the estimation of traffic state using an innovative data collection method that uses vehicle trajectories collected from on-board cameras.