Abstract:Accurate molecular property prediction is central to drug discovery, yet graph neural networks often underperform in data-scarce regimes and fail to surpass traditional fingerprints. We introduce cross-graph inter-message passing (XIMP), which performs message passing both within and across multiple related graph representations. For small molecules, we combine the molecular graph with scaffold-aware junction trees and pharmacophore-encoding extended reduced graphs, integrating complementary abstractions. While prior work is either limited to a single abstraction or non-iterative communication across graphs, XIMP supports an arbitrary number of abstractions and both direct and indirect communication between them in each layer. Across ten diverse molecular property prediction tasks, XIMP outperforms state-of-the-art baselines in most cases, leveraging interpretable abstractions as an inductive bias that guides learning toward established chemical concepts, enhancing generalization in low-data settings.
Abstract:The lottery ticket hypothesis (LTH) is well-studied for convolutional neural networks but has been validated only empirically for graph neural networks (GNNs), for which theoretical findings are largely lacking. In this paper, we identify the expressivity of sparse subnetworks, i.e. their ability to distinguish non-isomorphic graphs, as crucial for finding winning tickets that preserve the predictive performance. We establish conditions under which the expressivity of a sparsely initialized GNN matches that of the full network, particularly when compared to the Weisfeiler-Leman test, and in that context put forward and prove a Strong Expressive Lottery Ticket Hypothesis. We subsequently show that an increased expressivity in the initialization potentially accelerates model convergence and improves generalization. Our findings establish novel theoretical foundations for both LTH and GNN research, highlighting the importance of maintaining expressivity in sparsely initialized GNNs. We illustrate our results using examples from drug discovery.