Abstract:Despite advances in legal NLP, no comprehensive evaluation covering multiple legal-specific LLMs currently exists for contract classification tasks in contract understanding. To address this gap, we present an evaluation of 10 legal-specific LLMs on three English language contract understanding tasks and compare them with 7 general-purpose LLMs. The results show that legal-specific LLMs consistently outperform general-purpose models, especially on tasks requiring nuanced legal understanding. Legal-BERT and Contracts-BERT establish new SOTAs on two of the three tasks, despite having 69% fewer parameters than the best-performing general-purpose LLM. We also identify CaseLaw-BERT and LexLM as strong additional baselines for contract understanding. Our results provide a holistic evaluation of legal-specific LLMs and will facilitate the development of more accurate contract understanding systems.
Abstract:Craters are one of the most prominent features on planetary surfaces, used in applications such as age estimation, hazard detection, and spacecraft navigation. Crater detection is a challenging problem due to various aspects, including complex crater characteristics such as varying sizes and shapes, data resolution, and planetary data types. Similar to other computer vision tasks, deep learning-based approaches have significantly impacted research on crater detection in recent years. This survey aims to assist researchers in this field by examining the development of deep learning-based crater detection algorithms (CDAs). The review includes over 140 research works covering diverse crater detection approaches, including planetary data, craters database, and evaluation metrics. To be specific, we discuss the challenges in crater detection due to the complex properties of the craters and survey the DL-based CDAs by categorizing them into three parts: (a) semantic segmentation-based, (b) object detection-based, and (c) classification-based. Additionally, we have conducted training and testing of all the semantic segmentation-based CDAs on a common dataset to evaluate the effectiveness of each architecture for crater detection and its potential applications. Finally, we have provided recommendations for potential future works.