Abstract:Purpose: Magnetic Resonance Spectroscopic Imaging (MRSI) maps endogenous brain metabolism while suppressing the overwhelming water signal. Water-unsuppressed MRSI (wu-MRSI) allows simultaneous imaging of water and metabolites, but large water sidebands cause challenges for metabolic fitting. We developed an end-to-end deep-learning pipeline to overcome these challenges at ultra-high field. Methods:Fast high-resolution wu-MRSI was acquired at 7T with non-cartesian ECCENTRIC sampling and ultra-short echo time. A water and lipid removal network (WALINET+) was developed to remove lipids, water signal, and sidebands. MRSI reconstruction was performed by DeepER and a physics-informed network for metabolite fitting. Water signal was used for absolute metabolite quantification, quantitative susceptibility mapping (QSM), and myelin water fraction imaging (MWF). Results: WALINET+ provided the lowest NRMSE (< 2%) in simulations and in vivo the smallest bias (< 20%) and limits-of-agreement (+-63%) between wu-MRSI and ws-MRSI scans. Several metabolites such as creatine and glutamate showed higher SNR in wu-MRSI. QSM and MWF obtained from wu-MRSI and GRE showed good agreement with 0 ppm/5.5% bias and +-0.05 ppm/ +- 12.75% limits-of-agreement. Conclusion: High-quality metabolic, QSM, and MWF mapping of the human brain can be obtained simultaneously by ECCENTRIC wu-MRSI at 7T with 2 mm isotropic resolution in 12 min. WALINET+ robustly removes water sidebands while preserving metabolite signal, eliminating the need for water suppression and separate water acquisitions.
Abstract:Purpose: To investigate the use of a Vision Transformer (ViT) to reconstruct/denoise GABA-edited magnetic resonance spectroscopy (MRS) from a quarter of the typically acquired number of transients using spectrograms. Theory and Methods: A quarter of the typically acquired number of transients collected in GABA-edited MRS scans are pre-processed and converted to a spectrogram image representation using the Short-Time Fourier Transform (STFT). The image representation of the data allows the adaptation of a pre-trained ViT for reconstructing GABA-edited MRS spectra (Spectro-ViT). The Spectro-ViT is fine-tuned and then tested using \textit{in vivo} GABA-edited MRS data. The Spectro-ViT performance is compared against other models in the literature using spectral quality metrics and estimated metabolite concentration values. Results: The Spectro-ViT model significantly outperformed all other models in four out of five quantitative metrics (mean squared error, shape score, GABA+/water fit error, and full width at half maximum). The metabolite concentrations estimated (GABA+/water, GABA+/Cr, and Glx/water) were consistent with the metabolite concentrations estimated using typical GABA-edited MRS scans reconstructed with the full amount of typically collected transients. Conclusion: The proposed Spectro-ViT model achieved state-of-the-art results in reconstructing GABA-edited MRS, and the results indicate these scans could be up to four times faster.