Abstract:Reliable long-term forecasting of PM2.5 concentrations is critical for public health early-warning systems, yet existing deep learning approaches struggle to maintain prediction stability beyond 48 hours, especially in cities with sparse monitoring networks. This paper presents a deep learning framework that combines Dynamic Time Warping (DTW) for intelligent station similarity selection with a CNN-GRU architecture to enable extended-horizon PM2.5 forecasting in Isfahan, Iran, a city characterized by complex pollution dynamics and limited monitoring coverage. Unlike existing approaches that rely on computationally intensive transformer models or external simulation tools, our method integrates three key innovations: (i) DTW-based historical sampling to identify similar pollution patterns across peer stations, (ii) a lightweight CNN-GRU architecture augmented with meteorological features, and (iii) a scalable design optimized for sparse networks. Experimental validation using multi-year hourly data from eight monitoring stations demonstrates superior performance compared to state-of-the-art deep learning methods, achieving R2 = 0.91 for 24-hour forecasts. Notably, this is the first study to demonstrate stable 10-day PM2.5 forecasting (R2 = 0.73 at 240 hours) without performance degradation, addressing critical early-warning system requirements. The framework's computational efficiency and independence from external tools make it particularly suitable for deployment in resource-constrained urban environments.
Abstract:The increase in vehicle numbers in California, driven by inadequate transportation systems and sparse speed cameras, necessitates effective vehicle speed detection. Detecting vehicle speeds per lane is critical for monitoring High-Occupancy Vehicle (HOV) lane speeds, distinguishing between cars and heavy vehicles with differing speed limits, and enforcing lane restrictions for heavy vehicles. While prior works utilized YOLO (You Only Look Once) for vehicle speed detection, they often lacked accuracy, failed to identify vehicle lanes, and offered limited or less practical classification categories. This study introduces a fine-tuned YOLOv11 model, trained on almost 800 bird's-eye view images, to enhance vehicle speed detection accuracy which is much higher compare to the previous works. The proposed system identifies the lane for each vehicle and classifies vehicles into two categories: cars and heavy vehicles. Designed to meet the specific requirements of traffic monitoring and regulation, the model also evaluates the effects of factors such as drone height, distance of Region of Interest (ROI), and vehicle speed on detection accuracy and speed measurement. Drone footage collected from Northern California was used to assess the proposed system. The fine-tuned YOLOv11 achieved its best performance with a mean absolute error (MAE) of 0.97 mph and mean squared error (MSE) of 0.94 $\text{mph}^2$, demonstrating its efficacy in addressing challenges in vehicle speed detection and classification.