Abstract:We aim to investigate the impact of image and signal properties on visual attention mechanisms during a signal detection task in digital images. The application of insight yielded from this work spans many areas of digital imaging where signal or pattern recognition is involved in complex heterogenous background. We used simulated tomographic breast images as the platform to investigate this question. While radiologists are highly effective at analyzing medical images to detect and diagnose diseases, misdiagnosis still occurs. We selected digital breast tomosynthesis (DBT) images as a sample medical images with different breast densities and structures using digital breast phantoms (Bakic and XCAT). Two types of lesions (with distinct spatial frequency properties) were randomly inserted in the phantoms during projections to generate abnormal cases. Six human observers participated in observer study designed for a locating and detection of an 3-mm sphere lesion and 6-mm spicule lesion in reconstructed in-plane DBT slices. We collected eye-gaze data to estimate gaze metrics and to examine differences in visual attention mechanisms. We found that detection performance in complex visual environments is strongly constrained by later perceptual stages, with decision failures accounting for the largest proportion of errors. Signal detectability is jointly influenced by both target morphology and background complexity, revealing a critical interaction between local signal features and global anatomical noise. Increased fixation duration on spiculated lesions suggests that visual attention is differentially engaged depending on background and signal spatial frequency dependencies.
Abstract:Purpose: Digital phantoms are one of the key components of virtual imaging trials (VITs) that aim to assess and optimize new medical imaging systems and algorithms. However, these phantoms vary in their voxel resolution, appearance, and structural details. This study aims to examine whether and how variations between digital phantoms influence system optimization with digital breast tomosynthesis (DBT) as a chosen modality. Methods: We selected widely used and open-access digital breast phantoms generated with different methods. For each phantom type, we created an ensemble of DBT images to test acquisition strategies. Human observer localization ROC (LROC) was used to assess observer performance studies for each case. Noise power spectrum (NPS) was estimated to compare the phantom structural components. Further, we computed several gaze metrics to quantify the gaze pattern when viewing images generated from different phantom types. Results: Our LROC results show that the arc samplings for peak performance were approximately 2.5 degrees and 6 degrees in Bakic and XCAT breast phantoms respectively for 3-mm lesion detection tasks and indicate that system optimization outcomes from VITs can vary with phantom types and structural frequency components. Additionally, a significant correlation (p= 0.01) between gaze metrics and diagnostic performance suggests that gaze analysis can be used to understand and evaluate task difficulty in VITs.