Abstract:Clubroot, a major soilborne disease affecting canola and other cruciferous crops, is characterized by the development of large galls on the roots of susceptible hosts. In this study, we present the first application of terahertz time-domain spectroscopy (THz-TDS) as a non-invasive diagnosis tool in plant pathology. Compared with conventional molecular, spectroscopic, and immunoassay-based methods, THz-TDS offers distinct advantages, including non-contact, non-destructive, and preparation-free measurement, enabling rapid in situ screening of plant and soil samples. Our results demonstrate that THz-TDS can differentiate between healthy and clubroot-infected tissues by detecting both structural and biochemical alterations. Specifically, infected roots exhibit a blue shift in the refractive index in the low-frequency THz range, along with distinct peaks-indicative of disruptions in water transport and altered metabolic activity in both roots and leaves. Interestingly, the characteristic root swelling observed in infected plants reflects internal tissue disorganization rather than an actual increase in water content. Furthermore, a physics-constrained neural network is proposed to extract the main feature in THz-TDS. A comprehensive evaluation, including time-domain signals, amplitude and phase images, refractive index and absorption coefficient maps, and principal component analysis, provides enhanced contrast and spatial resolution compared to raw time-domain or frequency signals. These findings suggest that THz-TDS holds significant potential for early, non-destructive detection of plant diseases and may serve as a valuable tool to limit their spread in agricultural systems.